Module miplearn.extractors
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import gzip
import logging
import pickle
from abc import ABC, abstractmethod
import numpy as np
from tqdm.auto import tqdm
logger = logging.getLogger(__name__)
class InstanceIterator:
def __init__(self, instances):
self.instances = instances
self.current = 0
def __iter__(self):
return self
def __next__(self):
if self.current >= len(self.instances):
raise StopIteration
result = self.instances[self.current]
self.current += 1
if isinstance(result, str):
logger.debug("Read: %s" % result)
try:
if result.endswith(".gz"):
with gzip.GzipFile(result, "rb") as file:
result = pickle.load(file)
else:
with open(result, "rb") as file:
result = pickle.load(file)
except pickle.UnpicklingError:
raise Exception(f"Invalid instance file: {result}")
return result
class Extractor(ABC):
@abstractmethod
def extract(self, instances):
pass
@staticmethod
def split_variables(instance):
result = {}
lp_solution = instance.training_data[0]["LP solution"]
for var_name in lp_solution:
for index in lp_solution[var_name]:
category = instance.get_variable_category(var_name, index)
if category is None:
continue
if category not in result:
result[category] = []
result[category] += [(var_name, index)]
return result
class VariableFeaturesExtractor(Extractor):
def extract(self, instances):
result = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (vars)",
disable=len(instances) < 5,
):
instance_features = instance.get_instance_features()
var_split = self.split_variables(instance)
lp_solution = instance.training_data[0]["LP solution"]
for (category, var_index_pairs) in var_split.items():
if category not in result:
result[category] = []
for (var_name, index) in var_index_pairs:
result[category] += [
instance_features.tolist()
+ instance.get_variable_features(var_name, index).tolist()
+ [lp_solution[var_name][index]]
]
for category in result:
result[category] = np.array(result[category])
return result
class SolutionExtractor(Extractor):
def __init__(self, relaxation=False):
self.relaxation = relaxation
def extract(self, instances):
result = {}
for instance in tqdm(
InstanceIterator(instances),
desc="Extract (solution)",
disable=len(instances) < 5,
):
var_split = self.split_variables(instance)
if self.relaxation:
solution = instance.training_data[0]["LP solution"]
else:
solution = instance.training_data[0]["Solution"]
for (category, var_index_pairs) in var_split.items():
if category not in result:
result[category] = []
for (var_name, index) in var_index_pairs:
v = solution[var_name][index]
if v is None:
result[category] += [[0, 0]]
else:
result[category] += [[1 - v, v]]
for category in result:
result[category] = np.array(result[category])
return result
class InstanceFeaturesExtractor(Extractor):
def extract(self, instances):
return np.vstack(
[
np.hstack(
[
instance.get_instance_features(),
instance.training_data[0]["LP value"],
]
)
for instance in InstanceIterator(instances)
]
)
class ObjectiveValueExtractor(Extractor):
def __init__(self, kind="lp"):
assert kind in ["lower bound", "upper bound", "lp"]
self.kind = kind
def extract(self, instances):
if self.kind == "lower bound":
return np.array(
[
[instance.training_data[0]["Lower bound"]]
for instance in InstanceIterator(instances)
]
)
if self.kind == "upper bound":
return np.array(
[
[instance.training_data[0]["Upper bound"]]
for instance in InstanceIterator(instances)
]
)
if self.kind == "lp":
return np.array(
[
[instance.training_data[0]["LP value"]]
for instance in InstanceIterator(instances)
]
)
Classes
class Extractor (*args, **kwargs)
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class Extractor(ABC): @abstractmethod def extract(self, instances): pass @staticmethod def split_variables(instance): result = {} lp_solution = instance.training_data[0]["LP solution"] for var_name in lp_solution: for index in lp_solution[var_name]: category = instance.get_variable_category(var_name, index) if category is None: continue if category not in result: result[category] = [] result[category] += [(var_name, index)] return result
Ancestors
- abc.ABC
Subclasses
Static methods
def split_variables(instance)
-
Expand source code
@staticmethod def split_variables(instance): result = {} lp_solution = instance.training_data[0]["LP solution"] for var_name in lp_solution: for index in lp_solution[var_name]: category = instance.get_variable_category(var_name, index) if category is None: continue if category not in result: result[category] = [] result[category] += [(var_name, index)] return result
Methods
def extract(self, instances)
-
Expand source code
@abstractmethod def extract(self, instances): pass
class InstanceFeaturesExtractor (*args, **kwargs)
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class InstanceFeaturesExtractor(Extractor): def extract(self, instances): return np.vstack( [ np.hstack( [ instance.get_instance_features(), instance.training_data[0]["LP value"], ] ) for instance in InstanceIterator(instances) ] )
Ancestors
- Extractor
- abc.ABC
Methods
def extract(self, instances)
-
Expand source code
def extract(self, instances): return np.vstack( [ np.hstack( [ instance.get_instance_features(), instance.training_data[0]["LP value"], ] ) for instance in InstanceIterator(instances) ] )
class InstanceIterator (instances)
-
Expand source code
class InstanceIterator: def __init__(self, instances): self.instances = instances self.current = 0 def __iter__(self): return self def __next__(self): if self.current >= len(self.instances): raise StopIteration result = self.instances[self.current] self.current += 1 if isinstance(result, str): logger.debug("Read: %s" % result) try: if result.endswith(".gz"): with gzip.GzipFile(result, "rb") as file: result = pickle.load(file) else: with open(result, "rb") as file: result = pickle.load(file) except pickle.UnpicklingError: raise Exception(f"Invalid instance file: {result}") return result
class ObjectiveValueExtractor (kind='lp')
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class ObjectiveValueExtractor(Extractor): def __init__(self, kind="lp"): assert kind in ["lower bound", "upper bound", "lp"] self.kind = kind def extract(self, instances): if self.kind == "lower bound": return np.array( [ [instance.training_data[0]["Lower bound"]] for instance in InstanceIterator(instances) ] ) if self.kind == "upper bound": return np.array( [ [instance.training_data[0]["Upper bound"]] for instance in InstanceIterator(instances) ] ) if self.kind == "lp": return np.array( [ [instance.training_data[0]["LP value"]] for instance in InstanceIterator(instances) ] )
Ancestors
- Extractor
- abc.ABC
Methods
def extract(self, instances)
-
Expand source code
def extract(self, instances): if self.kind == "lower bound": return np.array( [ [instance.training_data[0]["Lower bound"]] for instance in InstanceIterator(instances) ] ) if self.kind == "upper bound": return np.array( [ [instance.training_data[0]["Upper bound"]] for instance in InstanceIterator(instances) ] ) if self.kind == "lp": return np.array( [ [instance.training_data[0]["LP value"]] for instance in InstanceIterator(instances) ] )
class SolutionExtractor (relaxation=False)
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class SolutionExtractor(Extractor): def __init__(self, relaxation=False): self.relaxation = relaxation def extract(self, instances): result = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (solution)", disable=len(instances) < 5, ): var_split = self.split_variables(instance) if self.relaxation: solution = instance.training_data[0]["LP solution"] else: solution = instance.training_data[0]["Solution"] for (category, var_index_pairs) in var_split.items(): if category not in result: result[category] = [] for (var_name, index) in var_index_pairs: v = solution[var_name][index] if v is None: result[category] += [[0, 0]] else: result[category] += [[1 - v, v]] for category in result: result[category] = np.array(result[category]) return result
Ancestors
- Extractor
- abc.ABC
Methods
def extract(self, instances)
-
Expand source code
def extract(self, instances): result = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (solution)", disable=len(instances) < 5, ): var_split = self.split_variables(instance) if self.relaxation: solution = instance.training_data[0]["LP solution"] else: solution = instance.training_data[0]["Solution"] for (category, var_index_pairs) in var_split.items(): if category not in result: result[category] = [] for (var_name, index) in var_index_pairs: v = solution[var_name][index] if v is None: result[category] += [[0, 0]] else: result[category] += [[1 - v, v]] for category in result: result[category] = np.array(result[category]) return result
class VariableFeaturesExtractor (*args, **kwargs)
-
Helper class that provides a standard way to create an ABC using inheritance.
Expand source code
class VariableFeaturesExtractor(Extractor): def extract(self, instances): result = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (vars)", disable=len(instances) < 5, ): instance_features = instance.get_instance_features() var_split = self.split_variables(instance) lp_solution = instance.training_data[0]["LP solution"] for (category, var_index_pairs) in var_split.items(): if category not in result: result[category] = [] for (var_name, index) in var_index_pairs: result[category] += [ instance_features.tolist() + instance.get_variable_features(var_name, index).tolist() + [lp_solution[var_name][index]] ] for category in result: result[category] = np.array(result[category]) return result
Ancestors
- Extractor
- abc.ABC
Methods
def extract(self, instances)
-
Expand source code
def extract(self, instances): result = {} for instance in tqdm( InstanceIterator(instances), desc="Extract (vars)", disable=len(instances) < 5, ): instance_features = instance.get_instance_features() var_split = self.split_variables(instance) lp_solution = instance.training_data[0]["LP solution"] for (category, var_index_pairs) in var_split.items(): if category not in result: result[category] = [] for (var_name, index) in var_index_pairs: result[category] += [ instance_features.tolist() + instance.get_variable_features(var_name, index).tolist() + [lp_solution[var_name][index]] ] for category in result: result[category] = np.array(result[category]) return result