Module miplearn.problems.tests.test_tsp
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from numpy.linalg import norm
from scipy.spatial.distance import pdist, squareform
from scipy.stats import uniform, randint
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
from miplearn.solvers.learning import LearningSolver
def test_generator():
instances = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=100, high=101),
gamma=uniform(loc=0.95, scale=0.1),
fix_cities=True,
).generate(100)
assert len(instances) == 100
assert instances[0].n_cities == 100
assert norm(instances[0].distances - instances[0].distances.T) < 1e-6
d = [instance.distances[0, 1] for instance in instances]
assert np.std(d) > 0
def test_instance():
n_cities = 4
distances = np.array(
[
[0.0, 1.0, 2.0, 1.0],
[1.0, 0.0, 1.0, 2.0],
[2.0, 1.0, 0.0, 1.0],
[1.0, 2.0, 1.0, 0.0],
]
)
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
stats = solver.solve(instance)
x = instance.training_data[0]["Solution"]["x"]
assert x[0, 1] == 1.0
assert x[0, 2] == 0.0
assert x[0, 3] == 1.0
assert x[1, 2] == 1.0
assert x[1, 3] == 0.0
assert x[2, 3] == 1.0
assert stats["Lower bound"] == 4.0
assert stats["Upper bound"] == 4.0
def test_subtour():
n_cities = 6
cities = np.array(
[
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
]
)
distances = squareform(pdist(cities))
instance = TravelingSalesmanInstance(n_cities, distances)
solver = LearningSolver()
solver.solve(instance)
assert hasattr(instance, "found_violated_lazy_constraints")
assert hasattr(instance, "found_violated_user_cuts")
x = instance.training_data[0]["Solution"]["x"]
assert x[0, 1] == 1.0
assert x[0, 4] == 1.0
assert x[1, 2] == 1.0
assert x[2, 3] == 1.0
assert x[3, 5] == 1.0
assert x[4, 5] == 1.0
solver.fit([instance])
solver.solve(instance)
Functions
def test_generator()
-
Expand source code
def test_generator(): instances = TravelingSalesmanGenerator( x=uniform(loc=0.0, scale=1000.0), y=uniform(loc=0.0, scale=1000.0), n=randint(low=100, high=101), gamma=uniform(loc=0.95, scale=0.1), fix_cities=True, ).generate(100) assert len(instances) == 100 assert instances[0].n_cities == 100 assert norm(instances[0].distances - instances[0].distances.T) < 1e-6 d = [instance.distances[0, 1] for instance in instances] assert np.std(d) > 0
def test_instance()
-
Expand source code
def test_instance(): n_cities = 4 distances = np.array( [ [0.0, 1.0, 2.0, 1.0], [1.0, 0.0, 1.0, 2.0], [2.0, 1.0, 0.0, 1.0], [1.0, 2.0, 1.0, 0.0], ] ) instance = TravelingSalesmanInstance(n_cities, distances) solver = LearningSolver() stats = solver.solve(instance) x = instance.training_data[0]["Solution"]["x"] assert x[0, 1] == 1.0 assert x[0, 2] == 0.0 assert x[0, 3] == 1.0 assert x[1, 2] == 1.0 assert x[1, 3] == 0.0 assert x[2, 3] == 1.0 assert stats["Lower bound"] == 4.0 assert stats["Upper bound"] == 4.0
def test_subtour()
-
Expand source code
def test_subtour(): n_cities = 6 cities = np.array( [ [0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0], ] ) distances = squareform(pdist(cities)) instance = TravelingSalesmanInstance(n_cities, distances) solver = LearningSolver() solver.solve(instance) assert hasattr(instance, "found_violated_lazy_constraints") assert hasattr(instance, "found_violated_user_cuts") x = instance.training_data[0]["Solution"]["x"] assert x[0, 1] == 1.0 assert x[0, 4] == 1.0 assert x[1, 2] == 1.0 assert x[2, 3] == 1.0 assert x[3, 5] == 1.0 assert x[4, 5] == 1.0 solver.fit([instance]) solver.solve(instance)