Module miplearn.solvers.tests.test_learning_solver
Expand source code
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
import pickle
import tempfile
import os
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.learning import LearningSolver
from miplearn.solvers.tests import _get_knapsack_instance, _get_internal_solvers
logger = logging.getLogger(__name__)
def test_learning_solver():
for mode in ["exact", "heuristic"]:
for internal_solver in _get_internal_solvers():
logger.info("Solver: %s" % internal_solver)
instance = _get_knapsack_instance(internal_solver)
solver = LearningSolver(
solver=internal_solver,
mode=mode,
)
solver.solve(instance)
data = instance.training_data[0]
assert data["Solution"]["x"][0] == 1.0
assert data["Solution"]["x"][1] == 0.0
assert data["Solution"]["x"][2] == 1.0
assert data["Solution"]["x"][3] == 1.0
assert data["Lower bound"] == 1183.0
assert data["Upper bound"] == 1183.0
assert round(data["LP solution"]["x"][0], 3) == 1.000
assert round(data["LP solution"]["x"][1], 3) == 0.923
assert round(data["LP solution"]["x"][2], 3) == 1.000
assert round(data["LP solution"]["x"][3], 3) == 0.000
assert round(data["LP value"], 3) == 1287.923
assert len(data["MIP log"]) > 100
solver.fit([instance])
solver.solve(instance)
# Assert solver is picklable
with tempfile.TemporaryFile() as file:
pickle.dump(solver, file)
def test_solve_without_lp():
for internal_solver in _get_internal_solvers():
logger.info("Solver: %s" % internal_solver)
instance = _get_knapsack_instance(internal_solver)
solver = LearningSolver(
solver=internal_solver,
solve_lp_first=False,
)
solver.solve(instance)
solver.fit([instance])
solver.solve(instance)
def test_parallel_solve():
for internal_solver in _get_internal_solvers():
instances = [_get_knapsack_instance(internal_solver) for _ in range(10)]
solver = LearningSolver(solver=internal_solver)
results = solver.parallel_solve(instances, n_jobs=3)
assert len(results) == 10
for instance in instances:
data = instance.training_data[0]
assert len(data["Solution"]["x"].keys()) == 4
def test_solve_fit_from_disk():
for internal_solver in _get_internal_solvers():
# Create instances and pickle them
filenames = []
for k in range(3):
instance = _get_knapsack_instance(internal_solver)
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as file:
filenames += [file.name]
pickle.dump(instance, file)
# Test: solve
solver = LearningSolver(solver=internal_solver)
solver.solve(filenames[0])
with open(filenames[0], "rb") as file:
instance = pickle.load(file)
assert len(instance.training_data) > 0
# Test: parallel_solve
solver.parallel_solve(filenames)
for filename in filenames:
with open(filename, "rb") as file:
instance = pickle.load(file)
assert len(instance.training_data) > 0
# Test: solve (with specified output)
output = [f + ".out" for f in filenames]
solver.solve(
filenames[0],
output_filename=output[0],
)
assert os.path.isfile(output[0])
# Test: parallel_solve (with specified output)
solver.parallel_solve(
filenames,
output_filenames=output,
)
for filename in output:
assert os.path.isfile(filename)
# Delete temporary files
for filename in filenames:
os.remove(filename)
for filename in output:
os.remove(filename)
def test_simulate_perfect():
internal_solver = GurobiSolver
instance = _get_knapsack_instance(internal_solver)
with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp:
pickle.dump(instance, tmp)
tmp.flush()
solver = LearningSolver(
solver=internal_solver,
simulate_perfect=True,
)
stats = solver.solve(tmp.name)
assert stats["Lower bound"] == stats["Predicted LB"]
Functions
def test_learning_solver()
-
Expand source code
def test_learning_solver(): for mode in ["exact", "heuristic"]: for internal_solver in _get_internal_solvers(): logger.info("Solver: %s" % internal_solver) instance = _get_knapsack_instance(internal_solver) solver = LearningSolver( solver=internal_solver, mode=mode, ) solver.solve(instance) data = instance.training_data[0] assert data["Solution"]["x"][0] == 1.0 assert data["Solution"]["x"][1] == 0.0 assert data["Solution"]["x"][2] == 1.0 assert data["Solution"]["x"][3] == 1.0 assert data["Lower bound"] == 1183.0 assert data["Upper bound"] == 1183.0 assert round(data["LP solution"]["x"][0], 3) == 1.000 assert round(data["LP solution"]["x"][1], 3) == 0.923 assert round(data["LP solution"]["x"][2], 3) == 1.000 assert round(data["LP solution"]["x"][3], 3) == 0.000 assert round(data["LP value"], 3) == 1287.923 assert len(data["MIP log"]) > 100 solver.fit([instance]) solver.solve(instance) # Assert solver is picklable with tempfile.TemporaryFile() as file: pickle.dump(solver, file)
def test_parallel_solve()
-
Expand source code
def test_parallel_solve(): for internal_solver in _get_internal_solvers(): instances = [_get_knapsack_instance(internal_solver) for _ in range(10)] solver = LearningSolver(solver=internal_solver) results = solver.parallel_solve(instances, n_jobs=3) assert len(results) == 10 for instance in instances: data = instance.training_data[0] assert len(data["Solution"]["x"].keys()) == 4
def test_simulate_perfect()
-
Expand source code
def test_simulate_perfect(): internal_solver = GurobiSolver instance = _get_knapsack_instance(internal_solver) with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as tmp: pickle.dump(instance, tmp) tmp.flush() solver = LearningSolver( solver=internal_solver, simulate_perfect=True, ) stats = solver.solve(tmp.name) assert stats["Lower bound"] == stats["Predicted LB"]
def test_solve_fit_from_disk()
-
Expand source code
def test_solve_fit_from_disk(): for internal_solver in _get_internal_solvers(): # Create instances and pickle them filenames = [] for k in range(3): instance = _get_knapsack_instance(internal_solver) with tempfile.NamedTemporaryFile(suffix=".pkl", delete=False) as file: filenames += [file.name] pickle.dump(instance, file) # Test: solve solver = LearningSolver(solver=internal_solver) solver.solve(filenames[0]) with open(filenames[0], "rb") as file: instance = pickle.load(file) assert len(instance.training_data) > 0 # Test: parallel_solve solver.parallel_solve(filenames) for filename in filenames: with open(filename, "rb") as file: instance = pickle.load(file) assert len(instance.training_data) > 0 # Test: solve (with specified output) output = [f + ".out" for f in filenames] solver.solve( filenames[0], output_filename=output[0], ) assert os.path.isfile(output[0]) # Test: parallel_solve (with specified output) solver.parallel_solve( filenames, output_filenames=output, ) for filename in output: assert os.path.isfile(filename) # Delete temporary files for filename in filenames: os.remove(filename) for filename in output: os.remove(filename)
def test_solve_without_lp()
-
Expand source code
def test_solve_without_lp(): for internal_solver in _get_internal_solvers(): logger.info("Solver: %s" % internal_solver) instance = _get_knapsack_instance(internal_solver) solver = LearningSolver( solver=internal_solver, solve_lp_first=False, ) solver.solve(instance) solver.fit([instance]) solver.solve(instance)