# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from abc import ABC, abstractmethod from typing import Dict, Optional, Any, Union, List import h5py from overrides import overrides Scalar = Union[None, bool, str, int, float] Vector = Union[None, List[bool], List[str], List[int], List[float]] class Sample(ABC): """Abstract dictionary-like class that stores training data.""" @abstractmethod def get_scalar(self, key: str) -> Optional[Any]: pass @abstractmethod def put_scalar(self, key: str, value: Scalar) -> None: pass @abstractmethod def get_vector(self, key: str) -> Optional[Any]: pass @abstractmethod def put_vector(self, key: str, value: Vector) -> None: pass @abstractmethod def get(self, key: str) -> Optional[Any]: pass @abstractmethod def put(self, key: str, value: Any) -> None: """ Add a new key/value pair to the sample. If the key already exists, the previous value is silently replaced. Only the following data types are supported: - str, bool, int, float - List[str], List[bool], List[int], List[float] """ pass def _assert_supported(self, value: Any) -> None: def _is_primitive(v: Any) -> bool: if isinstance(v, (str, bool, int, float)): return True if v is None: return True return False if _is_primitive(value): return if isinstance(value, list): if _is_primitive(value[0]): return if isinstance(value[0], list): if _is_primitive(value[0][0]): return assert False, f"Value has unsupported type: {value}" def _assert_scalar(self, value: Any) -> None: if value is None: return if isinstance(value, (str, bool, int, float)): return assert False, f"Scalar expected; found instead: {value}" def _assert_vector(self, value: Any) -> None: assert isinstance(value, list), f"List expected; found instead: {value}" for v in value: self._assert_scalar(v) class MemorySample(Sample): """Dictionary-like class that stores training data in-memory.""" def __init__( self, data: Optional[Dict[str, Any]] = None, ) -> None: if data is None: data = {} self._data: Dict[str, Any] = data @overrides def get_scalar(self, key: str) -> Optional[Any]: return self.get(key) @overrides def put_scalar(self, key: str, value: Scalar) -> None: self._assert_scalar(value) self.put(key, value) @overrides def get_vector(self, key: str) -> Optional[Any]: return self.get(key) @overrides def put_vector(self, key: str, value: Vector) -> None: if value is None: return self._assert_vector(value) self.put(key, value) @overrides def get(self, key: str) -> Optional[Any]: if key in self._data: return self._data[key] else: return None @overrides def put(self, key: str, value: Any) -> None: self._data[key] = value class Hdf5Sample(Sample): """ Dictionary-like class that stores training data in an HDF5 file. Unlike MemorySample, this class only loads to memory the parts of the data set that are actually accessed, and therefore it is more scalable. """ def __init__(self, filename: str) -> None: self.file = h5py.File(filename, "r+") @overrides def get_scalar(self, key: str) -> Optional[Any]: ds = self.file[key] assert len(ds.shape) == 0 if h5py.check_string_dtype(ds.dtype): return ds.asstr()[()] else: return ds[()].tolist() @overrides def get_vector(self, key: str) -> Optional[Any]: ds = self.file[key] assert len(ds.shape) == 1 if h5py.check_string_dtype(ds.dtype): return ds.asstr()[:].tolist() else: return ds[:].tolist() @overrides def put_scalar(self, key: str, value: Any) -> None: self._assert_scalar(value) self.put(key, value) @overrides def put_vector(self, key: str, value: Vector) -> None: if value is None: return self._assert_vector(value) self.put(key, value) @overrides def get(self, key: str) -> Optional[Any]: ds = self.file[key] if h5py.check_string_dtype(ds.dtype): return ds.asstr()[:].tolist() else: return ds[:].tolist() @overrides def put(self, key: str, value: Any) -> None: if key in self.file: del self.file[key] self.file.create_dataset(key, data=value)