# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from numpy.testing import assert_array_equal from sklearn.neighbors import KNeighborsClassifier from miplearn import ScikitLearnClassifier def test_constant_prediction(): x_train = np.array( [ [0.0, 1.0], [1.0, 0.0], ] ) y_train = np.array( [ [True, False], [True, False], ] ) clf = ScikitLearnClassifier( KNeighborsClassifier( n_neighbors=1, ) ) clf.fit(x_train, y_train) proba = clf.predict_proba(x_train) assert_array_equal( proba, np.array( [ [1.0, 0.0], [1.0, 0.0], ] ), )