# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List, Union, Optional, Any import gurobipy as gp import networkx as nx import numpy as np import pyomo.environ as pe from networkx import Graph from scipy.stats.distributions import rv_frozen from miplearn.io import read_pkl_gz from miplearn.problems import _gurobipy_set_params, _pyomo_set_params from miplearn.solvers.gurobi import GurobiModel from miplearn.solvers.pyomo import PyomoModel @dataclass class MaxCutData: graph: Graph weights: np.ndarray class MaxCutGenerator: """Random instance generator for the Maximum Cut Problem. Generates instances by creating a new random Erdős-Rényi graph $G_{n,p}$ for each instance, where $n$ and $p$ are sampled from user-provided probability distributions. For each instance, the generator assigns random edge weights drawn from the set {-1, 1} with equal probability. """ def __init__( self, n: rv_frozen, p: rv_frozen, ): """ Initialize the problem generator. Parameters ---------- n: rv_discrete Probability distribution for the number of nodes. p: rv_continuous Probability distribution for the graph density. """ assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution" assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution" self.n = n self.p = p def generate(self, n_samples: int) -> List[MaxCutData]: def _sample() -> MaxCutData: graph = self._generate_graph() weights = self._generate_weights(graph) return MaxCutData(graph, weights) return [_sample() for _ in range(n_samples)] def _generate_graph(self) -> Graph: return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs()) @staticmethod def _generate_weights(graph: Graph) -> np.ndarray: m = graph.number_of_edges() return np.random.randint(2, size=(m,)) * 2 - 1 class MaxCutPerturber: """Perturbation generator for existing Maximum Cut instances. Takes an existing MaxCutData instance and generates new instances by randomly flipping the sign of each edge weight with a given probability while keeping the graph structure fixed. """ def __init__( self, w_jitter: float = 0.05, ): """Initialize the perturbation generator. Parameters ---------- w_jitter: float Probability that each edge weight flips sign (from -1 to 1 or vice versa). """ assert 0.0 <= w_jitter <= 1.0, "w_jitter should be between 0.0 and 1.0" self.w_jitter = w_jitter def perturb( self, instance: MaxCutData, n_samples: int, ) -> List[MaxCutData]: def _sample() -> MaxCutData: jitter = self._generate_jitter(instance.graph) weights = instance.weights * jitter return MaxCutData(instance.graph, weights) return [_sample() for _ in range(n_samples)] def _generate_jitter(self, graph: Graph) -> np.ndarray: m = graph.number_of_edges() return (np.random.rand(m) >= self.w_jitter).astype(int) * 2 - 1 def build_maxcut_model_gurobipy( data: Union[str, MaxCutData], params: Optional[dict[str, Any]] = None, ) -> GurobiModel: # Initialize model model = gp.Model() _gurobipy_set_params(model, params) # Read data data = _maxcut_read(data) nodes = list(data.graph.nodes()) edges = list(data.graph.edges()) # Add decision variables x = model.addVars(nodes, vtype=gp.GRB.BINARY, name="x") # Add the objective function model.setObjective( gp.quicksum( -data.weights[i] * x[e[0]] * (1 - x[e[1]]) for (i, e) in enumerate(edges) ) ) model.update() return GurobiModel(model) def build_maxcut_model_pyomo( data: Union[str, MaxCutData], solver: str = "gurobi_persistent", params: Optional[dict[str, Any]] = None, ) -> PyomoModel: # Initialize model model = pe.ConcreteModel() # Read data data = _maxcut_read(data) nodes = pe.Set(initialize=list(data.graph.nodes)) edges = list(data.graph.edges()) # Add decision variables model.x = pe.Var(nodes, domain=pe.Binary, name="x") # Add the objective function model.obj = pe.Objective( expr=pe.quicksum( -data.weights[i] * model.x[e[0]] + data.weights[i] * model.x[e[0]] * model.x[e[1]] for (i, e) in enumerate(edges) ), sense=pe.minimize, ) model.pprint() pm = PyomoModel(model, solver) _pyomo_set_params(model, params, solver) return pm def _maxcut_read(data: Union[str, MaxCutData]) -> MaxCutData: if isinstance(data, str): data = read_pkl_gz(data) assert isinstance(data, MaxCutData) return data