# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List, Union import gurobipy as gp import numpy as np from gurobipy import GRB, quicksum from networkx import Graph from scipy.stats import uniform, randint from scipy.stats.distributions import rv_frozen from .stab import ( MaxWeightStableSetGenerator, MaxWeightStableSetPerturber, MaxWeightStableSetData, ) from miplearn.solvers.gurobi import GurobiModel from ..io import read_pkl_gz @dataclass class MinWeightVertexCoverData: graph: Graph weights: np.ndarray class MinWeightVertexCoverGenerator: """Random instance generator for the Minimum-Weight Vertex Cover Problem. Generates instances by creating a new random Erdős-Rényi graph $G_{n,p}$ for each instance, where $n$ and $p$ are sampled from user-provided probability distributions `n` and `p`. For each instance, the generator independently samples each $w_v$ from the user-provided probability distribution `w`. """ def __init__( self, w: rv_frozen = uniform(loc=10.0, scale=1.0), n: rv_frozen = randint(low=250, high=251), p: rv_frozen = uniform(loc=0.05, scale=0.0), ): """Initialize the problem generator. Parameters ---------- w: rv_continuous Probability distribution for vertex weights. n: rv_discrete Probability distribution for parameter $n$ in Erdős-Rényi model. p: rv_continuous Probability distribution for parameter $p$ in Erdős-Rényi model. """ assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution" assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution" assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution" self._generator = MaxWeightStableSetGenerator(w, n, p) def generate(self, n_samples: int) -> List[MinWeightVertexCoverData]: return [ MinWeightVertexCoverData(s.graph, s.weights) for s in self._generator.generate(n_samples) ] class MinWeightVertexCoverPerturber: """Perturbation generator for existing Minimum-Weight Vertex Cover instances. Takes an existing MinWeightVertexCoverData instance and generates new instances by applying randomization factors to the existing weights while keeping the graph fixed. """ def __init__( self, w_jitter: rv_frozen = uniform(loc=0.9, scale=0.2), ): """Initialize the perturbation generator. Parameters ---------- w_jitter: rv_continuous Probability distribution for randomization factors applied to vertex weights. """ self._perturber = MaxWeightStableSetPerturber(w_jitter) def perturb( self, instance: MinWeightVertexCoverData, n_samples: int, ) -> List[MinWeightVertexCoverData]: stab_instance = MaxWeightStableSetData(instance.graph, instance.weights) perturbed_instances = self._perturber.perturb(stab_instance, n_samples) return [ MinWeightVertexCoverData(s.graph, s.weights) for s in perturbed_instances ] def build_vertexcover_model_gurobipy( data: Union[str, MinWeightVertexCoverData] ) -> GurobiModel: if isinstance(data, str): data = read_pkl_gz(data) assert isinstance(data, MinWeightVertexCoverData) model = gp.Model() nodes = list(data.graph.nodes) x = model.addVars(nodes, vtype=GRB.BINARY, name="x") model.setObjective(quicksum(data.weights[i] * x[i] for i in nodes)) for v1, v2 in data.graph.edges: model.addConstr(x[v1] + x[v2] >= 1) model.update() return GurobiModel(model)