# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import random from tempfile import TemporaryDirectory import numpy as np from scipy.stats import randint, uniform from miplearn.h5 import H5File from miplearn.problems.maxcut import ( MaxCutGenerator, build_maxcut_model_gurobipy, build_maxcut_model_pyomo, ) from miplearn.solvers.abstract import AbstractModel def _set_seed() -> None: random.seed(42) np.random.seed(42) def test_maxcut_generator() -> None: _set_seed() gen = MaxCutGenerator( n=randint(low=5, high=6), p=uniform(loc=0.5, scale=0.0), ) data = gen.generate(3) assert len(data) == 3 assert list(data[0].graph.nodes()) == [0, 1, 2, 3, 4] assert list(data[0].graph.edges()) == [ (0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4), ] assert data[0].weights.tolist() == [-1, 1, -1, -1, -1, 1] def test_maxcut_model() -> None: _set_seed() data = MaxCutGenerator( n=randint(low=10, high=11), p=uniform(loc=0.5, scale=0.0), ).generate(1)[0] for model in [ build_maxcut_model_gurobipy(data), build_maxcut_model_pyomo(data), ]: assert isinstance(model, AbstractModel) with TemporaryDirectory() as tempdir: with H5File(f"{tempdir}/data.h5", "w") as h5: model.extract_after_load(h5) obj_lin = h5.get_array("static_var_obj_coeffs") assert obj_lin is not None assert obj_lin.tolist() == [ 3.0, 1.0, 3.0, 1.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, ] obj_quad = h5.get_array("static_var_obj_coeffs_quad") assert obj_quad is not None assert obj_quad.tolist() == [ [0.0, 0.0, -1.0, 1.0, -1.0, 0.0, 0.0, 0.0, -1.0, -1.0], [0.0, 0.0, 1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, -1.0], [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, -1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] model.optimize() model.extract_after_mip(h5) assert h5.get_scalar("mip_obj_value") == -4