# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from miplearn.problems.tsp import ( TravelingSalesmanData, TravelingSalesmanGenerator, build_tsp_model_gurobipy, ) from scipy.spatial.distance import pdist, squareform from scipy.stats import randint, uniform def test_tsp_generator() -> None: np.random.seed(42) gen = TravelingSalesmanGenerator( x=uniform(loc=0.0, scale=1000.0), y=uniform(loc=0.0, scale=1000.0), n=randint(low=5, high=6), gamma=uniform(loc=1.0, scale=0.25), round=True, ) data = gen.generate(1) assert data[0].distances.tolist() == [ [0.0, 525.0, 950.0, 392.0, 382.0], [525.0, 0.0, 752.0, 761.0, 178.0], [950.0, 752.0, 0.0, 809.0, 721.0], [392.0, 761.0, 809.0, 0.0, 700.0], [382.0, 178.0, 721.0, 700.0, 0.0], ] model = build_tsp_model_gurobipy(data[0]) model.optimize() assert model.inner.getAttr("x", model.inner.getVars()) == [ 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, ]