# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import random from tempfile import TemporaryDirectory import numpy as np from scipy.stats import randint, uniform from miplearn.h5 import H5File from miplearn.problems.maxcut import ( MaxCutGenerator, build_maxcut_model_gurobipy, build_maxcut_model_pyomo, ) def _set_seed(): random.seed(42) np.random.seed(42) def test_maxcut_generator_not_fixed() -> None: _set_seed() gen = MaxCutGenerator( n=randint(low=5, high=6), p=uniform(loc=0.5, scale=0.0), fix_graph=False, ) data = gen.generate(3) assert len(data) == 3 assert list(data[0].graph.nodes()) == [0, 1, 2, 3, 4] assert list(data[0].graph.edges()) == [ (0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4), ] assert data[0].weights.tolist() == [-1, 1, -1, -1, -1, 1] assert list(data[1].graph.nodes()) == [0, 1, 2, 3, 4] assert list(data[1].graph.edges()) == [(0, 1), (0, 3), (0, 4), (1, 4), (3, 4)] assert data[1].weights.tolist() == [-1, -1, -1, 1, -1] def test_maxcut_generator_fixed() -> None: random.seed(42) np.random.seed(42) gen = MaxCutGenerator( n=randint(low=5, high=6), p=uniform(loc=0.5, scale=0.0), fix_graph=True, w_jitter=0.25, ) data = gen.generate(3) assert len(data) == 3 for i in range(3): assert list(data[i].graph.nodes()) == [0, 1, 2, 3, 4] assert list(data[i].graph.edges()) == [ (0, 2), (0, 3), (0, 4), (2, 3), (2, 4), (3, 4), ] assert data[0].weights.tolist() == [-1, -1, 1, 1, -1, 1] assert data[1].weights.tolist() == [-1, -1, -1, -1, 1, -1] assert data[2].weights.tolist() == [1, 1, -1, -1, -1, 1] def test_maxcut_model(): _set_seed() data = MaxCutGenerator( n=randint(low=10, high=11), p=uniform(loc=0.5, scale=0.0), fix_graph=True, ).generate(1)[0] for build_model in [ build_maxcut_model_gurobipy, build_maxcut_model_pyomo, ]: model = build_model(data) with TemporaryDirectory() as tempdir: with H5File(f"{tempdir}/data.h5", "w") as h5: model.extract_after_load(h5) obj_lin = h5.get_array("static_var_obj_coeffs") assert obj_lin is not None assert obj_lin.tolist() == [ 3.0, 1.0, 3.0, 1.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0, ] obj_quad = h5.get_array("static_var_obj_coeffs_quad") assert obj_quad is not None assert obj_quad.tolist() == [ [0.0, 0.0, -1.0, 1.0, -1.0, 0.0, 0.0, 0.0, -1.0, -1.0], [0.0, 0.0, 1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, -1.0], [0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, -1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] model.optimize() model.extract_after_mip(h5) assert h5.get_scalar("mip_obj_value") == -4