# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List import networkx as nx import numpy as np import pyomo.environ as pe from networkx import Graph from overrides import overrides from scipy.stats import uniform, randint from scipy.stats.distributions import rv_frozen from miplearn.instance.base import Instance @dataclass class MaxWeightStableSetData: graph: Graph weights: np.ndarray class MaxWeightStableSetInstance(Instance): """An instance of the Maximum-Weight Stable Set Problem. Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is a subset of vertices, no two of which are adjacent. This is one of Karp's 21 NP-complete problems. """ def __init__(self, graph: Graph, weights: np.ndarray) -> None: super().__init__() self.graph = graph self.weights = weights self.nodes = list(self.graph.nodes) @overrides def to_model(self) -> pe.ConcreteModel: model = pe.ConcreteModel() model.x = pe.Var(self.nodes, domain=pe.Binary) model.OBJ = pe.Objective( expr=sum(model.x[v] * self.weights[v] for v in self.nodes), sense=pe.maximize, ) model.clique_eqs = pe.ConstraintList() for clique in nx.find_cliques(self.graph): model.clique_eqs.add(sum(model.x[v] for v in clique) <= 1) return model @overrides def get_variable_features(self, names: np.ndarray) -> np.ndarray: features = [] assert len(names) == len(self.nodes) for i, v1 in enumerate(self.nodes): assert names[i] == f"x[{v1}]".encode() neighbor_weights = [0.0] * 15 neighbor_degrees = [100.0] * 15 for v2 in self.graph.neighbors(v1): neighbor_weights += [self.weights[v2] / self.weights[v1]] neighbor_degrees += [self.graph.degree(v2) / self.graph.degree(v1)] neighbor_weights.sort(reverse=True) neighbor_degrees.sort() f = [] f += neighbor_weights[:5] f += neighbor_degrees[:5] f += [self.graph.degree(v1)] features.append(f) return np.array(features) @overrides def get_variable_categories(self, names: np.ndarray) -> np.ndarray: return np.array(["default" for _ in names], dtype="S") class MaxWeightStableSetGenerator: """Random instance generator for the Maximum-Weight Stable Set Problem. The generator has two modes of operation. When `fix_graph=True` is provided, one random Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$ and $p$ are sampled from user-provided probability distributions `n` and `p`. To generate each instance, the generator independently samples each $w_v$ from the user-provided probability distribution `w`. When `fix_graph=False`, a new random graph is generated for each instance; the remaining parameters are sampled in the same way. """ def __init__( self, w: rv_frozen = uniform(loc=10.0, scale=1.0), n: rv_frozen = randint(low=250, high=251), p: rv_frozen = uniform(loc=0.05, scale=0.0), fix_graph: bool = True, ): """Initialize the problem generator. Parameters ---------- w: rv_continuous Probability distribution for vertex weights. n: rv_discrete Probability distribution for parameter $n$ in Erdős-Rényi model. p: rv_continuous Probability distribution for parameter $p$ in Erdős-Rényi model. """ assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution" assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution" assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution" self.w = w self.n = n self.p = p self.fix_graph = fix_graph self.graph = None if fix_graph: self.graph = self._generate_graph() def generate(self, n_samples: int) -> List[MaxWeightStableSetData]: def _sample() -> MaxWeightStableSetData: if self.graph is not None: graph = self.graph else: graph = self._generate_graph() weights = self.w.rvs(graph.number_of_nodes()) return MaxWeightStableSetData(graph, weights) return [_sample() for _ in range(n_samples)] def _generate_graph(self) -> Graph: return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())