13. Solvers

13.1. miplearn.solvers.abstract

class miplearn.solvers.abstract.AbstractModel

Bases: ABC

WHERE_CUTS = 'cuts'
WHERE_DEFAULT = 'default'
WHERE_LAZY = 'lazy'
abstract add_constrs(var_names: ndarray, constrs_lhs: ndarray, constrs_sense: ndarray, constrs_rhs: ndarray, stats: Dict | None = None) None
abstract extract_after_load(h5: H5File) None
abstract extract_after_lp(h5: H5File) None
abstract extract_after_mip(h5: H5File) None
abstract fix_variables(var_names: ndarray, var_values: ndarray, stats: Dict | None = None) None
lazy_enforce(violations: List[Any]) None
abstract optimize() None
abstract relax() AbstractModel
set_cuts(cuts: List) None
abstract set_warm_starts(var_names: ndarray, var_values: ndarray, stats: Dict | None = None) None
abstract write(filename: str) None

13.2. miplearn.solvers.gurobi

class miplearn.solvers.gurobi.GurobiModel(inner: Model, lazy_separate: Callable | None = None, lazy_enforce: Callable | None = None, cuts_separate: Callable | None = None, cuts_enforce: Callable | None = None)

Bases: AbstractModel

add_constr(constr: Any) None
add_constrs(var_names: ndarray, constrs_lhs: ndarray, constrs_sense: ndarray, constrs_rhs: ndarray, stats: Dict | None = None) None
extract_after_load(h5: H5File) None

Given a model that has just been loaded, extracts static problem features, such as variable names and types, objective coefficients, etc.

extract_after_lp(h5: H5File) None

Given a linear programming model that has just been solved, extracts dynamic problem features, such as optimal LP solution, basis status, etc.

extract_after_mip(h5: H5File) None

Given a mixed-integer linear programming model that has just been solved, extracts dynamic problem features, such as optimal MIP solution.

fix_variables(var_names: ndarray, var_values: ndarray, stats: Dict | None = None) None
optimize() None
relax() GurobiModel
set_time_limit(time_limit_sec: float) None
set_warm_starts(var_names: ndarray, var_values: ndarray, stats: Dict | None = None) None
write(filename: str) None

13.3. miplearn.solvers.learning

class miplearn.solvers.learning.LearningSolver(components: List[Any], skip_lp: bool = False)

Bases: object

fit(data_filenames: List[str]) None
optimize(model: str | AbstractModel, build_model: Callable | None = None) Dict[str, Any]