# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from miplearn.extractors.abstract import FeaturesExtractor from miplearn.h5 import H5File class DummyExtractor(FeaturesExtractor): def get_instance_features(self, h5: H5File) -> np.ndarray: return np.zeros(1) def get_var_features(self, h5: H5File) -> np.ndarray: var_types = h5.get_array("static_var_types") assert var_types is not None n_vars = len(var_types) return np.zeros((n_vars, 1)) def get_constr_features(self, h5: H5File) -> np.ndarray: constr_sense = h5.get_array("static_constr_sense") assert constr_sense is not None n_constr = len(constr_sense) return np.zeros((n_constr, 1))