# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from miplearn import GurobiSolver from miplearn.features import ( FeaturesExtractor, InstanceFeatures, VariableFeatures, ConstraintFeatures, ) from tests.fixtures.knapsack import get_knapsack_instance def test_knapsack() -> None: for solver_factory in [GurobiSolver]: solver = solver_factory() instance = get_knapsack_instance(solver) model = instance.to_model() solver.set_instance(instance, model) FeaturesExtractor(solver).extract(instance) assert instance.features.variables == { "x": { 0: VariableFeatures( category="default", user_features=[23.0, 505.0], ), 1: VariableFeatures( category="default", user_features=[26.0, 352.0], ), 2: VariableFeatures( category="default", user_features=[20.0, 458.0], ), 3: VariableFeatures( category="default", user_features=[18.0, 220.0], ), } } assert instance.features.constraints == { "eq_capacity": ConstraintFeatures( lhs={ "x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0, }, sense="<", rhs=67.0, lazy=False, category="eq_capacity", user_features=[0.0], ) } assert instance.features.instance == InstanceFeatures( user_features=[67.0, 21.75], lazy_constraint_count=0, )