# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from scipy.stats import uniform, randint from miplearn.problems.knapsack import MultiKnapsackGenerator def test_knapsack_generator() -> None: gen = MultiKnapsackGenerator( n=randint(low=100, high=101), m=randint(low=30, high=31), w=randint(low=0, high=1000), K=randint(low=500, high=501), u=uniform(loc=1.0, scale=1.0), alpha=uniform(loc=0.50, scale=0.0), ) instances = gen.generate(100) w_sum = sum(instance.weights for instance in instances) / len(instances) b_sum = sum(instance.capacities for instance in instances) / len(instances) assert round(float(np.mean(w_sum)), -1) == 500.0 assert round(float(np.mean(b_sum)), -3) == 25000.0