# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from dataclasses import dataclass from typing import List, Union import gurobipy as gp import numpy as np from gurobipy import GRB, quicksum from networkx import Graph from scipy.stats import uniform, randint from scipy.stats.distributions import rv_frozen from .stab import MaxWeightStableSetGenerator from miplearn.solvers.gurobi import GurobiModel from ..io import read_pkl_gz @dataclass class MinWeightVertexCoverData: graph: Graph weights: np.ndarray class MinWeightVertexCoverGenerator: def __init__( self, w: rv_frozen = uniform(loc=10.0, scale=1.0), n: rv_frozen = randint(low=250, high=251), p: rv_frozen = uniform(loc=0.05, scale=0.0), fix_graph: bool = True, ): self._generator = MaxWeightStableSetGenerator(w, n, p, fix_graph) def generate(self, n_samples: int) -> List[MinWeightVertexCoverData]: return [ MinWeightVertexCoverData(s.graph, s.weights) for s in self._generator.generate(n_samples) ] def build_vertexcover_model(data: Union[str, MinWeightVertexCoverData]) -> GurobiModel: if isinstance(data, str): data = read_pkl_gz(data) assert isinstance(data, MinWeightVertexCoverData) model = gp.Model() nodes = list(data.graph.nodes) x = model.addVars(nodes, vtype=GRB.BINARY, name="x") model.setObjective(quicksum(data.weights[i] * x[i] for i in nodes)) for (v1, v2) in data.graph.edges: model.addConstr(x[v1] + x[v2] >= 1) model.update() return GurobiModel(model)