# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from miplearn import WarmStartComponent, LearningSolver from miplearn.problems.knapsack import KnapsackInstance import numpy as np import tempfile def _get_instances(): return [ KnapsackInstance( weights=[23., 26., 20., 18.], prices=[505., 352., 458., 220.], capacity=67., ), ] * 2 # def test_warm_start_save_load(): # state_file = tempfile.NamedTemporaryFile(mode="r") # solver = LearningSolver(components={"warm-start": WarmStartComponent()}) # solver.parallel_solve(_get_instances(), n_jobs=2) # solver.fit() # comp = solver.components["warm-start"] # assert comp.x_train["default"].shape == (8, 6) # assert comp.y_train["default"].shape == (8, 2) # assert ("default", 0) in comp.predictors.keys() # assert ("default", 1) in comp.predictors.keys() # solver.save_state(state_file.name) # solver.solve(_get_instances()[0]) # solver = LearningSolver(components={"warm-start": WarmStartComponent()}) # solver.load_state(state_file.name) # comp = solver.components["warm-start"] # assert comp.x_train["default"].shape == (8, 6) # assert comp.y_train["default"].shape == (8, 2) # assert ("default", 0) in comp.predictors.keys() # assert ("default", 1) in comp.predictors.keys()