# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import os.path from miplearn.benchmark import BenchmarkRunner from miplearn.problems.stab import MaxWeightStableSetGenerator from scipy.stats import randint from miplearn.solvers.learning import LearningSolver def test_benchmark(): # Generate training and test instances generator = MaxWeightStableSetGenerator(n=randint(low=25, high=26)) train_instances = generator.generate(5) test_instances = generator.generate(3) # Training phase... training_solver = LearningSolver() training_solver.parallel_solve(train_instances, n_jobs=10) # Test phase... test_solvers = { "Strategy A": LearningSolver(), "Strategy B": LearningSolver(), } benchmark = BenchmarkRunner(test_solvers) benchmark.fit(train_instances) benchmark.parallel_solve(test_instances, n_jobs=2, n_trials=2) assert benchmark.results.values.shape == (12, 17) benchmark.write_csv("/tmp/benchmark.csv") assert os.path.isfile("/tmp/benchmark.csv")