# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from unittest.mock import Mock import numpy as np from miplearn import BranchPriorityComponent, BranchPriorityExtractor from miplearn.classifiers import Regressor from miplearn.tests import get_test_pyomo_instances def test_branch_extract(): instances, models = get_test_pyomo_instances() instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}} instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}} priorities = BranchPriorityExtractor().extract(instances) assert priorities["default"].tolist() == [100, 200, 300, 400, 150, 250, 350, 450] def test_branch_calculate(): instances, models = get_test_pyomo_instances() comp = BranchPriorityComponent() # If instances do not have branch_priority property, fit should compute them comp.fit(instances) assert instances[0].branch_priorities == {"x": {0: 5730, 1: 24878, 2: 0, 3: 0,}} # If instances already have branch_priority, fit should not modify them instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}} comp.fit(instances) assert instances[0].branch_priorities == {"x": {0: 100, 1: 200, 2: 300, 3: 400}} def test_branch_x_y_predict(): instances, models = get_test_pyomo_instances() instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}} instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}} comp = BranchPriorityComponent() comp.regressors["default"] = Mock(spec=Regressor) comp.regressors["default"].predict = Mock(return_value=np.array([150., 100., 0., 0.])) x, y = comp.x(instances), comp.y(instances) assert x["default"].shape == (8, 5) assert y["default"].shape == (8,) pred = comp.predict(instances[0]) assert pred == {"x": {0: 150., 1: 100., 2: 0., 3: 0.}}