# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import numpy as np from numpy.linalg import norm from scipy.spatial.distance import pdist, squareform from scipy.stats import uniform, randint from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance from miplearn.solvers.learning import LearningSolver def test_generator(): instances = TravelingSalesmanGenerator( x=uniform(loc=0.0, scale=1000.0), y=uniform(loc=0.0, scale=1000.0), n=randint(low=100, high=101), gamma=uniform(loc=0.95, scale=0.1), fix_cities=True, ).generate(100) assert len(instances) == 100 assert instances[0].n_cities == 100 assert norm(instances[0].distances - instances[0].distances.T) < 1e-6 d = [instance.distances[0, 1] for instance in instances] assert np.std(d) > 0 def test_instance(): n_cities = 4 distances = np.array( [ [0.0, 1.0, 2.0, 1.0], [1.0, 0.0, 1.0, 2.0], [2.0, 1.0, 0.0, 1.0], [1.0, 2.0, 1.0, 0.0], ] ) instance = TravelingSalesmanInstance(n_cities, distances) solver = LearningSolver() stats = solver.solve(instance) solution = instance.training_data[0].solution assert solution["x[(0, 1)]"] == 1.0 assert solution["x[(0, 2)]"] == 0.0 assert solution["x[(0, 3)]"] == 1.0 assert solution["x[(1, 2)]"] == 1.0 assert solution["x[(1, 3)]"] == 0.0 assert solution["x[(2, 3)]"] == 1.0 assert stats["Lower bound"] == 4.0 assert stats["Upper bound"] == 4.0 def test_subtour(): n_cities = 6 cities = np.array( [ [0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0], ] ) distances = squareform(pdist(cities)) instance = TravelingSalesmanInstance(n_cities, distances) solver = LearningSolver() solver.solve(instance) assert len(instance.training_data[0].lazy_enforced) > 0 solution = instance.training_data[0].solution assert solution["x[(0, 1)]"] == 1.0 assert solution["x[(0, 4)]"] == 1.0 assert solution["x[(1, 2)]"] == 1.0 assert solution["x[(2, 3)]"] == 1.0 assert solution["x[(3, 5)]"] == 1.0 assert solution["x[(4, 5)]"] == 1.0 solver.fit([instance]) solver.solve(instance)