You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/io.py

97 lines
2.6 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from gzip import GzipFile
import os
import pickle
import sys
from typing import IO, Any, Callable, List, cast, TextIO
from .parallel import p_umap
import shutil
class _RedirectOutput:
def __init__(self, streams: List[Any]) -> None:
self.streams = streams
def write(self, data: Any) -> None:
for stream in self.streams:
stream.write(data)
def flush(self) -> None:
for stream in self.streams:
stream.flush()
def __enter__(self) -> Any:
self._original_stdout = sys.stdout
self._original_stderr = sys.stderr
sys.stdout = cast(TextIO, self)
sys.stderr = cast(TextIO, self)
return self
def __exit__(
self,
_type: Any,
_value: Any,
_traceback: Any,
) -> None:
sys.stdout = self._original_stdout
sys.stderr = self._original_stderr
def write_pkl_gz(
objs: List[Any],
dirname: str,
prefix: str = "",
n_jobs: int = 1,
progress: bool = False,
) -> List[str]:
filenames = [f"{dirname}/{prefix}{i:05d}.pkl.gz" for i in range(len(objs))]
def _process(i: int) -> None:
filename = filenames[i]
obj = objs[i]
os.makedirs(os.path.dirname(filename), exist_ok=True)
with GzipFile(filename, "wb") as file:
pickle.dump(obj, cast(IO[bytes], file))
if n_jobs > 1:
p_umap(
_process,
range(len(objs)),
smoothing=0,
num_cpus=n_jobs,
maxtasksperchild=None,
disable=not progress,
)
else:
for i in range(len(objs)):
_process(i)
return filenames
def gzip(filename: str) -> None:
with open(filename, "rb") as input_file:
with GzipFile(f"{filename}.gz", "wb") as output_file:
shutil.copyfileobj(input_file, output_file)
os.remove(filename)
def read_pkl_gz(filename: str) -> Any:
with GzipFile(filename, "rb") as file:
return pickle.load(cast(IO[bytes], file))
def _to_h5_filename(data_filename: str) -> str:
output = f"{data_filename}.h5"
output = output.replace(".gz.h5", ".h5")
output = output.replace(".csv.h5", ".h5")
output = output.replace(".jld2.h5", ".h5")
output = output.replace(".json.h5", ".h5")
output = output.replace(".lp.h5", ".h5")
output = output.replace(".mps.h5", ".h5")
output = output.replace(".pkl.h5", ".h5")
return output