You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/test_h5.py

65 lines
2.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from tempfile import TemporaryDirectory
from typing import Any
import numpy as np
from scipy.sparse import coo_matrix
from miplearn.h5 import H5File
def test_h5() -> None:
with TemporaryDirectory() as tempdir:
with H5File(f"{tempdir}/data.h5", "w") as h5:
_assert_roundtrip_scalar(h5, "A")
_assert_roundtrip_scalar(h5, True)
_assert_roundtrip_scalar(h5, 1)
_assert_roundtrip_scalar(h5, 1.0)
assert h5.get_scalar("unknown-key") is None
_assert_roundtrip_array(h5, np.array([True, False]))
_assert_roundtrip_array(h5, np.array([1, 2, 3]))
_assert_roundtrip_array(h5, np.array([1.0, 2.0, 3.0]))
_assert_roundtrip_array(h5, np.array(["A", "BB", "CCC"], dtype="S"))
assert h5.get_array("unknown-key") is None
_assert_roundtrip_sparse(
h5,
coo_matrix(
[
[1.0, 0.0, 0.0],
[0.0, 2.0, 3.0],
[0.0, 0.0, 4.0],
],
),
)
assert h5.get_sparse("unknown-key") is None
def _assert_roundtrip_array(h5: H5File, original: np.ndarray) -> None:
h5.put_array("key", original)
recovered = h5.get_array("key")
assert recovered is not None
assert isinstance(recovered, np.ndarray)
assert (recovered == original).all()
def _assert_roundtrip_scalar(h5: H5File, original: Any) -> None:
h5.put_scalar("key", original)
recovered = h5.get_scalar("key")
assert recovered == original
assert recovered is not None
assert isinstance(
recovered, original.__class__
), f"Expected {original.__class__}, found {recovered.__class__} instead"
def _assert_roundtrip_sparse(h5: H5File, original: coo_matrix) -> None:
h5.put_sparse("key", original)
recovered = h5.get_sparse("key")
assert recovered is not None
assert isinstance(recovered, coo_matrix)
assert (original != recovered).sum() == 0