You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/classifiers/test_sklearn.py

34 lines
1.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from numpy.testing import assert_array_equal
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsClassifier
from miplearn.classifiers.sklearn import ScikitLearnClassifier, ScikitLearnRegressor
def test_constant_prediction():
x_train = np.array([[0.0, 1.0], [1.0, 0.0]])
y_train = np.array([[True, False], [True, False]])
clf = ScikitLearnClassifier(KNeighborsClassifier(n_neighbors=1))
clf.fit(x_train, y_train)
proba = clf.predict_proba(x_train)
assert_array_equal(
proba,
np.array([[1.0, 0.0], [1.0, 0.0]]),
)
def test_regressor():
x_train = np.array([[0.0, 1.0], [1.0, 4.0], [2.0, 2.0]])
y_train = np.array([[1.0], [5.0], [4.0]])
x_test = np.array([[4.0, 4.0], [0.0, 0.0]])
clf = ScikitLearnRegressor(LinearRegression())
clf.fit(x_train, y_train)
y_test_actual = clf.predict(x_test)
y_test_expected = np.array([[8.0], [0.0]])
assert_array_equal(np.round(y_test_actual, 2), y_test_expected)