You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/0.2/api/miplearn/components/objective.html

392 lines
20 KiB

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.7.5" />
<title>miplearn.components.objective API documentation</title>
<meta name="description" content="" />
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>miplearn.components.objective</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python"># MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from copy import deepcopy
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import (
mean_squared_error,
explained_variance_score,
max_error,
mean_absolute_error,
r2_score,
)
from miplearn.classifiers import Regressor
from miplearn.components.component import Component
from miplearn.extractors import InstanceFeaturesExtractor, ObjectiveValueExtractor
logger = logging.getLogger(__name__)
class ObjectiveValueComponent(Component):
&#34;&#34;&#34;
A Component which predicts the optimal objective value of the problem.
&#34;&#34;&#34;
def __init__(
self,
regressor: Regressor = LinearRegression(),
) -&gt; None:
self.ub_regressor = None
self.lb_regressor = None
self.regressor_prototype = regressor
def before_solve(self, solver, instance, model):
if self.ub_regressor is not None:
logger.info(&#34;Predicting optimal value...&#34;)
lb, ub = self.predict([instance])[0]
instance.predicted_ub = ub
instance.predicted_lb = lb
logger.info(&#34;Predicted values: lb=%.2f, ub=%.2f&#34; % (lb, ub))
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
if self.ub_regressor is not None:
stats[&#34;Predicted UB&#34;] = instance.predicted_ub
stats[&#34;Predicted LB&#34;] = instance.predicted_lb
else:
stats[&#34;Predicted UB&#34;] = None
stats[&#34;Predicted LB&#34;] = None
def fit(self, training_instances):
logger.debug(&#34;Extracting features...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
ub = ObjectiveValueExtractor(kind=&#34;upper bound&#34;).extract(training_instances)
lb = ObjectiveValueExtractor(kind=&#34;lower bound&#34;).extract(training_instances)
assert ub.shape == (len(training_instances), 1)
assert lb.shape == (len(training_instances), 1)
self.ub_regressor = deepcopy(self.regressor_prototype)
self.lb_regressor = deepcopy(self.regressor_prototype)
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.ub_regressor.fit(features, ub.ravel())
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.lb_regressor.fit(features, lb.ravel())
def predict(self, instances):
features = InstanceFeaturesExtractor().extract(instances)
lb = self.lb_regressor.predict(features)
ub = self.ub_regressor.predict(features)
assert lb.shape == (len(instances),)
assert ub.shape == (len(instances),)
return np.array([lb, ub]).T
def evaluate(self, instances):
y_pred = self.predict(instances)
y_true = np.array(
[
[
inst.training_data[0][&#34;Lower bound&#34;],
inst.training_data[0][&#34;Upper bound&#34;],
]
for inst in instances
]
)
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
ev = {
&#34;Lower bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_lb, y_pred_lb),
&#34;Explained variance&#34;: explained_variance_score(y_true_lb, y_pred_lb),
&#34;Max error&#34;: max_error(y_true_lb, y_pred_lb),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
&#34;R2&#34;: r2_score(y_true_lb, y_pred_lb),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
},
&#34;Upper bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_ub, y_pred_ub),
&#34;Explained variance&#34;: explained_variance_score(y_true_ub, y_pred_ub),
&#34;Max error&#34;: max_error(y_true_ub, y_pred_ub),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
&#34;R2&#34;: r2_score(y_true_ub, y_pred_ub),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
},
}
return ev</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="miplearn.components.objective.ObjectiveValueComponent"><code class="flex name class">
<span>class <span class="ident">ObjectiveValueComponent</span></span>
<span>(</span><span>regressor=LinearRegression())</span>
</code></dt>
<dd>
<section class="desc"><p>A Component which predicts the optimal objective value of the problem.</p></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">class ObjectiveValueComponent(Component):
&#34;&#34;&#34;
A Component which predicts the optimal objective value of the problem.
&#34;&#34;&#34;
def __init__(
self,
regressor: Regressor = LinearRegression(),
) -&gt; None:
self.ub_regressor = None
self.lb_regressor = None
self.regressor_prototype = regressor
def before_solve(self, solver, instance, model):
if self.ub_regressor is not None:
logger.info(&#34;Predicting optimal value...&#34;)
lb, ub = self.predict([instance])[0]
instance.predicted_ub = ub
instance.predicted_lb = lb
logger.info(&#34;Predicted values: lb=%.2f, ub=%.2f&#34; % (lb, ub))
def after_solve(
self,
solver,
instance,
model,
stats,
training_data,
):
if self.ub_regressor is not None:
stats[&#34;Predicted UB&#34;] = instance.predicted_ub
stats[&#34;Predicted LB&#34;] = instance.predicted_lb
else:
stats[&#34;Predicted UB&#34;] = None
stats[&#34;Predicted LB&#34;] = None
def fit(self, training_instances):
logger.debug(&#34;Extracting features...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
ub = ObjectiveValueExtractor(kind=&#34;upper bound&#34;).extract(training_instances)
lb = ObjectiveValueExtractor(kind=&#34;lower bound&#34;).extract(training_instances)
assert ub.shape == (len(training_instances), 1)
assert lb.shape == (len(training_instances), 1)
self.ub_regressor = deepcopy(self.regressor_prototype)
self.lb_regressor = deepcopy(self.regressor_prototype)
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.ub_regressor.fit(features, ub.ravel())
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.lb_regressor.fit(features, lb.ravel())
def predict(self, instances):
features = InstanceFeaturesExtractor().extract(instances)
lb = self.lb_regressor.predict(features)
ub = self.ub_regressor.predict(features)
assert lb.shape == (len(instances),)
assert ub.shape == (len(instances),)
return np.array([lb, ub]).T
def evaluate(self, instances):
y_pred = self.predict(instances)
y_true = np.array(
[
[
inst.training_data[0][&#34;Lower bound&#34;],
inst.training_data[0][&#34;Upper bound&#34;],
]
for inst in instances
]
)
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
ev = {
&#34;Lower bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_lb, y_pred_lb),
&#34;Explained variance&#34;: explained_variance_score(y_true_lb, y_pred_lb),
&#34;Max error&#34;: max_error(y_true_lb, y_pred_lb),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
&#34;R2&#34;: r2_score(y_true_lb, y_pred_lb),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
},
&#34;Upper bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_ub, y_pred_ub),
&#34;Explained variance&#34;: explained_variance_score(y_true_ub, y_pred_ub),
&#34;Max error&#34;: max_error(y_true_ub, y_pred_ub),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
&#34;R2&#34;: r2_score(y_true_ub, y_pred_ub),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
},
}
return ev</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="miplearn.components.component.Component" href="component.html#miplearn.components.component.Component">Component</a></li>
<li>abc.ABC</li>
</ul>
<h3>Methods</h3>
<dl>
<dt id="miplearn.components.objective.ObjectiveValueComponent.evaluate"><code class="name flex">
<span>def <span class="ident">evaluate</span></span>(<span>self, instances)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def evaluate(self, instances):
y_pred = self.predict(instances)
y_true = np.array(
[
[
inst.training_data[0][&#34;Lower bound&#34;],
inst.training_data[0][&#34;Upper bound&#34;],
]
for inst in instances
]
)
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
ev = {
&#34;Lower bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_lb, y_pred_lb),
&#34;Explained variance&#34;: explained_variance_score(y_true_lb, y_pred_lb),
&#34;Max error&#34;: max_error(y_true_lb, y_pred_lb),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
&#34;R2&#34;: r2_score(y_true_lb, y_pred_lb),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_lb, y_pred_lb),
},
&#34;Upper bound&#34;: {
&#34;Mean squared error&#34;: mean_squared_error(y_true_ub, y_pred_ub),
&#34;Explained variance&#34;: explained_variance_score(y_true_ub, y_pred_ub),
&#34;Max error&#34;: max_error(y_true_ub, y_pred_ub),
&#34;Mean absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
&#34;R2&#34;: r2_score(y_true_ub, y_pred_ub),
&#34;Median absolute error&#34;: mean_absolute_error(y_true_ub, y_pred_ub),
},
}
return ev</code></pre>
</details>
</dd>
<dt id="miplearn.components.objective.ObjectiveValueComponent.fit"><code class="name flex">
<span>def <span class="ident">fit</span></span>(<span>self, training_instances)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def fit(self, training_instances):
logger.debug(&#34;Extracting features...&#34;)
features = InstanceFeaturesExtractor().extract(training_instances)
ub = ObjectiveValueExtractor(kind=&#34;upper bound&#34;).extract(training_instances)
lb = ObjectiveValueExtractor(kind=&#34;lower bound&#34;).extract(training_instances)
assert ub.shape == (len(training_instances), 1)
assert lb.shape == (len(training_instances), 1)
self.ub_regressor = deepcopy(self.regressor_prototype)
self.lb_regressor = deepcopy(self.regressor_prototype)
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.ub_regressor.fit(features, ub.ravel())
logger.debug(&#34;Fitting ub_regressor...&#34;)
self.lb_regressor.fit(features, lb.ravel())</code></pre>
</details>
</dd>
<dt id="miplearn.components.objective.ObjectiveValueComponent.predict"><code class="name flex">
<span>def <span class="ident">predict</span></span>(<span>self, instances)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def predict(self, instances):
features = InstanceFeaturesExtractor().extract(instances)
lb = self.lb_regressor.predict(features)
ub = self.ub_regressor.predict(features)
assert lb.shape == (len(instances),)
assert ub.shape == (len(instances),)
return np.array([lb, ub]).T</code></pre>
</details>
</dd>
</dl>
<h3>Inherited members</h3>
<ul class="hlist">
<li><code><b><a title="miplearn.components.component.Component" href="component.html#miplearn.components.component.Component">Component</a></b></code>:
<ul class="hlist">
<li><code><a title="miplearn.components.component.Component.after_solve" href="component.html#miplearn.components.component.Component.after_solve">after_solve</a></code></li>
<li><code><a title="miplearn.components.component.Component.before_solve" href="component.html#miplearn.components.component.Component.before_solve">before_solve</a></code></li>
<li><code><a title="miplearn.components.component.Component.iteration_cb" href="component.html#miplearn.components.component.Component.iteration_cb">iteration_cb</a></code></li>
</ul>
</li>
</ul>
</dd>
</dl>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="miplearn.components" href="index.html">miplearn.components</a></code></li>
</ul>
</li>
<li><h3><a href="#header-classes">Classes</a></h3>
<ul>
<li>
<h4><code><a title="miplearn.components.objective.ObjectiveValueComponent" href="#miplearn.components.objective.ObjectiveValueComponent">ObjectiveValueComponent</a></code></h4>
<ul class="">
<li><code><a title="miplearn.components.objective.ObjectiveValueComponent.evaluate" href="#miplearn.components.objective.ObjectiveValueComponent.evaluate">evaluate</a></code></li>
<li><code><a title="miplearn.components.objective.ObjectiveValueComponent.fit" href="#miplearn.components.objective.ObjectiveValueComponent.fit">fit</a></code></li>
<li><code><a title="miplearn.components.objective.ObjectiveValueComponent.predict" href="#miplearn.components.objective.ObjectiveValueComponent.predict">predict</a></code></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.5</a>.</p>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad()</script>
</body>
</html>