You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
587 lines
27 KiB
587 lines
27 KiB
<!doctype html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
|
|
<meta name="generator" content="pdoc 0.7.5" />
|
|
<title>miplearn.problems.tsp API documentation</title>
|
|
<meta name="description" content="" />
|
|
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
|
|
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
|
|
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
|
|
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
|
|
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
|
|
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
|
|
</head>
|
|
<body>
|
|
<main>
|
|
<article id="content">
|
|
<header>
|
|
<h1 class="title">Module <code>miplearn.problems.tsp</code></h1>
|
|
</header>
|
|
<section id="section-intro">
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python"># MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import networkx as nx
|
|
import numpy as np
|
|
import pyomo.environ as pe
|
|
from scipy.spatial.distance import pdist, squareform
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from miplearn.instance import Instance
|
|
|
|
|
|
class ChallengeA:
|
|
def __init__(
|
|
self,
|
|
seed=42,
|
|
n_training_instances=500,
|
|
n_test_instances=50,
|
|
):
|
|
|
|
np.random.seed(seed)
|
|
self.generator = TravelingSalesmanGenerator(
|
|
x=uniform(loc=0.0, scale=1000.0),
|
|
y=uniform(loc=0.0, scale=1000.0),
|
|
n=randint(low=350, high=351),
|
|
gamma=uniform(loc=0.95, scale=0.1),
|
|
fix_cities=True,
|
|
round=True,
|
|
)
|
|
|
|
np.random.seed(seed + 1)
|
|
self.training_instances = self.generator.generate(n_training_instances)
|
|
|
|
np.random.seed(seed + 2)
|
|
self.test_instances = self.generator.generate(n_test_instances)
|
|
|
|
|
|
class TravelingSalesmanGenerator:
|
|
"""Random generator for the Traveling Salesman Problem."""
|
|
|
|
def __init__(
|
|
self,
|
|
x=uniform(loc=0.0, scale=1000.0),
|
|
y=uniform(loc=0.0, scale=1000.0),
|
|
n=randint(low=100, high=101),
|
|
gamma=uniform(loc=1.0, scale=0.0),
|
|
fix_cities=True,
|
|
round=True,
|
|
):
|
|
"""Initializes the problem generator.
|
|
|
|
Initially, the generator creates n cities (x_1,y_1),...,(x_n,y_n) where n, x_i and y_i are
|
|
sampled independently from the provided probability distributions `n`, `x` and `y`. For each
|
|
(unordered) pair of cities (i,j), the distance d[i,j] between them is set to:
|
|
|
|
d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
|
|
|
|
where gamma is sampled from the provided probability distribution `gamma`.
|
|
|
|
If fix_cities=True, the list of cities is kept the same for all generated instances. The
|
|
gamma values, and therefore also the distances, are still different.
|
|
|
|
By default, all distances d[i,j] are rounded to the nearest integer. If `round=False`
|
|
is provided, this rounding will be disabled.
|
|
|
|
Arguments
|
|
---------
|
|
x: rv_continuous
|
|
Probability distribution for the x-coordinate of each city.
|
|
y: rv_continuous
|
|
Probability distribution for the y-coordinate of each city.
|
|
n: rv_discrete
|
|
Probability distribution for the number of cities.
|
|
fix_cities: bool
|
|
If False, cities will be resampled for every generated instance. Otherwise, list of
|
|
cities will be computed once, during the constructor.
|
|
round: bool
|
|
If True, distances are rounded to the nearest integer.
|
|
"""
|
|
assert isinstance(x, rv_frozen), "x should be a SciPy probability distribution"
|
|
assert isinstance(y, rv_frozen), "y should be a SciPy probability distribution"
|
|
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
gamma,
|
|
rv_frozen,
|
|
), "gamma should be a SciPy probability distribution"
|
|
self.x = x
|
|
self.y = y
|
|
self.n = n
|
|
self.gamma = gamma
|
|
self.round = round
|
|
|
|
if fix_cities:
|
|
self.fixed_n, self.fixed_cities = self._generate_cities()
|
|
else:
|
|
self.fixed_n = None
|
|
self.fixed_cities = None
|
|
|
|
def generate(self, n_samples):
|
|
def _sample():
|
|
if self.fixed_cities is not None:
|
|
n, cities = self.fixed_n, self.fixed_cities
|
|
else:
|
|
n, cities = self._generate_cities()
|
|
distances = squareform(pdist(cities)) * self.gamma.rvs(size=(n, n))
|
|
distances = np.tril(distances) + np.triu(distances.T, 1)
|
|
if self.round:
|
|
distances = distances.round()
|
|
return TravelingSalesmanInstance(n, distances)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
def _generate_cities(self):
|
|
n = self.n.rvs()
|
|
cities = np.array([(self.x.rvs(), self.y.rvs()) for _ in range(n)])
|
|
return n, cities
|
|
|
|
|
|
class TravelingSalesmanInstance(Instance):
|
|
"""An instance ot the Traveling Salesman Problem.
|
|
|
|
Given a list of cities and the distance between each pair of cities, the problem asks for the
|
|
shortest route starting at the first city, visiting each other city exactly once, then
|
|
returning to the first city. This problem is a generalization of the Hamiltonian path problem,
|
|
one of Karp's 21 NP-complete problems.
|
|
"""
|
|
|
|
def __init__(self, n_cities, distances):
|
|
assert isinstance(distances, np.ndarray)
|
|
assert distances.shape == (n_cities, n_cities)
|
|
self.n_cities = n_cities
|
|
self.distances = distances
|
|
|
|
def to_model(self):
|
|
model = pe.ConcreteModel()
|
|
model.edges = edges = [
|
|
(i, j) for i in range(self.n_cities) for j in range(i + 1, self.n_cities)
|
|
]
|
|
model.x = pe.Var(edges, domain=pe.Binary)
|
|
model.obj = pe.Objective(
|
|
expr=sum(model.x[i, j] * self.distances[i, j] for (i, j) in edges),
|
|
sense=pe.minimize,
|
|
)
|
|
model.eq_degree = pe.ConstraintList()
|
|
model.eq_subtour = pe.ConstraintList()
|
|
for i in range(self.n_cities):
|
|
model.eq_degree.add(
|
|
sum(
|
|
model.x[min(i, j), max(i, j)]
|
|
for j in range(self.n_cities)
|
|
if i != j
|
|
)
|
|
== 2
|
|
)
|
|
return model
|
|
|
|
def get_instance_features(self):
|
|
return np.array([1])
|
|
|
|
def get_variable_features(self, var_name, index):
|
|
return np.array([1])
|
|
|
|
def get_variable_category(self, var_name, index):
|
|
return index
|
|
|
|
def find_violated_lazy_constraints(self, model):
|
|
selected_edges = [e for e in model.edges if model.x[e].value > 0.5]
|
|
graph = nx.Graph()
|
|
graph.add_edges_from(selected_edges)
|
|
components = [frozenset(c) for c in list(nx.connected_components(graph))]
|
|
violations = []
|
|
for c in components:
|
|
if len(c) < self.n_cities:
|
|
violations += [c]
|
|
return violations
|
|
|
|
def build_lazy_constraint(self, model, component):
|
|
cut_edges = [
|
|
e
|
|
for e in model.edges
|
|
if (e[0] in component and e[1] not in component)
|
|
or (e[0] not in component and e[1] in component)
|
|
]
|
|
return model.eq_subtour.add(sum(model.x[e] for e in cut_edges) >= 2)
|
|
|
|
def find_violated_user_cuts(self, model):
|
|
return self.find_violated_lazy_constraints(model)
|
|
|
|
def build_user_cut(self, model, violation):
|
|
return self.build_lazy_constraint(model, violation)</code></pre>
|
|
</details>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
<section>
|
|
<h2 class="section-title" id="header-classes">Classes</h2>
|
|
<dl>
|
|
<dt id="miplearn.problems.tsp.ChallengeA"><code class="flex name class">
|
|
<span>class <span class="ident">ChallengeA</span></span>
|
|
<span>(</span><span>seed=42, n_training_instances=500, n_test_instances=50)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">class ChallengeA:
|
|
def __init__(
|
|
self,
|
|
seed=42,
|
|
n_training_instances=500,
|
|
n_test_instances=50,
|
|
):
|
|
|
|
np.random.seed(seed)
|
|
self.generator = TravelingSalesmanGenerator(
|
|
x=uniform(loc=0.0, scale=1000.0),
|
|
y=uniform(loc=0.0, scale=1000.0),
|
|
n=randint(low=350, high=351),
|
|
gamma=uniform(loc=0.95, scale=0.1),
|
|
fix_cities=True,
|
|
round=True,
|
|
)
|
|
|
|
np.random.seed(seed + 1)
|
|
self.training_instances = self.generator.generate(n_training_instances)
|
|
|
|
np.random.seed(seed + 2)
|
|
self.test_instances = self.generator.generate(n_test_instances)</code></pre>
|
|
</details>
|
|
</dd>
|
|
<dt id="miplearn.problems.tsp.TravelingSalesmanGenerator"><code class="flex name class">
|
|
<span>class <span class="ident">TravelingSalesmanGenerator</span></span>
|
|
<span>(</span><span>x=<scipy.stats._distn_infrastructure.rv_frozen object>, y=<scipy.stats._distn_infrastructure.rv_frozen object>, n=<scipy.stats._distn_infrastructure.rv_frozen object>, gamma=<scipy.stats._distn_infrastructure.rv_frozen object>, fix_cities=True, round=True)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"><p>Random generator for the Traveling Salesman Problem.</p>
|
|
<p>Initializes the problem generator.</p>
|
|
<p>Initially, the generator creates n cities (x_1,y_1),…,(x_n,y_n) where n, x_i and y_i are
|
|
sampled independently from the provided probability distributions <code>n</code>, <code>x</code> and <code>y</code>. For each
|
|
(unordered) pair of cities (i,j), the distance d[i,j] between them is set to:</p>
|
|
<pre><code>d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
|
|
</code></pre>
|
|
<p>where gamma is sampled from the provided probability distribution <code>gamma</code>.</p>
|
|
<p>If fix_cities=True, the list of cities is kept the same for all generated instances. The
|
|
gamma values, and therefore also the distances, are still different.</p>
|
|
<p>By default, all distances d[i,j] are rounded to the nearest integer.
|
|
If <code>round=False</code>
|
|
is provided, this rounding will be disabled.</p>
|
|
<h2 id="arguments">Arguments</h2>
|
|
<dl>
|
|
<dt><strong><code>x</code></strong> : <code>rv_continuous</code></dt>
|
|
<dd>Probability distribution for the x-coordinate of each city.</dd>
|
|
<dt><strong><code>y</code></strong> : <code>rv_continuous</code></dt>
|
|
<dd>Probability distribution for the y-coordinate of each city.</dd>
|
|
<dt><strong><code>n</code></strong> : <code>rv_discrete</code></dt>
|
|
<dd>Probability distribution for the number of cities.</dd>
|
|
<dt><strong><code>fix_cities</code></strong> : <code>bool</code></dt>
|
|
<dd>If False, cities will be resampled for every generated instance. Otherwise, list of
|
|
cities will be computed once, during the constructor.</dd>
|
|
<dt><strong><code>round</code></strong> : <code>bool</code></dt>
|
|
<dd>If True, distances are rounded to the nearest integer.</dd>
|
|
</dl></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">class TravelingSalesmanGenerator:
|
|
"""Random generator for the Traveling Salesman Problem."""
|
|
|
|
def __init__(
|
|
self,
|
|
x=uniform(loc=0.0, scale=1000.0),
|
|
y=uniform(loc=0.0, scale=1000.0),
|
|
n=randint(low=100, high=101),
|
|
gamma=uniform(loc=1.0, scale=0.0),
|
|
fix_cities=True,
|
|
round=True,
|
|
):
|
|
"""Initializes the problem generator.
|
|
|
|
Initially, the generator creates n cities (x_1,y_1),...,(x_n,y_n) where n, x_i and y_i are
|
|
sampled independently from the provided probability distributions `n`, `x` and `y`. For each
|
|
(unordered) pair of cities (i,j), the distance d[i,j] between them is set to:
|
|
|
|
d[i,j] = gamma[i,j] \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
|
|
|
|
where gamma is sampled from the provided probability distribution `gamma`.
|
|
|
|
If fix_cities=True, the list of cities is kept the same for all generated instances. The
|
|
gamma values, and therefore also the distances, are still different.
|
|
|
|
By default, all distances d[i,j] are rounded to the nearest integer. If `round=False`
|
|
is provided, this rounding will be disabled.
|
|
|
|
Arguments
|
|
---------
|
|
x: rv_continuous
|
|
Probability distribution for the x-coordinate of each city.
|
|
y: rv_continuous
|
|
Probability distribution for the y-coordinate of each city.
|
|
n: rv_discrete
|
|
Probability distribution for the number of cities.
|
|
fix_cities: bool
|
|
If False, cities will be resampled for every generated instance. Otherwise, list of
|
|
cities will be computed once, during the constructor.
|
|
round: bool
|
|
If True, distances are rounded to the nearest integer.
|
|
"""
|
|
assert isinstance(x, rv_frozen), "x should be a SciPy probability distribution"
|
|
assert isinstance(y, rv_frozen), "y should be a SciPy probability distribution"
|
|
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
gamma,
|
|
rv_frozen,
|
|
), "gamma should be a SciPy probability distribution"
|
|
self.x = x
|
|
self.y = y
|
|
self.n = n
|
|
self.gamma = gamma
|
|
self.round = round
|
|
|
|
if fix_cities:
|
|
self.fixed_n, self.fixed_cities = self._generate_cities()
|
|
else:
|
|
self.fixed_n = None
|
|
self.fixed_cities = None
|
|
|
|
def generate(self, n_samples):
|
|
def _sample():
|
|
if self.fixed_cities is not None:
|
|
n, cities = self.fixed_n, self.fixed_cities
|
|
else:
|
|
n, cities = self._generate_cities()
|
|
distances = squareform(pdist(cities)) * self.gamma.rvs(size=(n, n))
|
|
distances = np.tril(distances) + np.triu(distances.T, 1)
|
|
if self.round:
|
|
distances = distances.round()
|
|
return TravelingSalesmanInstance(n, distances)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
def _generate_cities(self):
|
|
n = self.n.rvs()
|
|
cities = np.array([(self.x.rvs(), self.y.rvs()) for _ in range(n)])
|
|
return n, cities</code></pre>
|
|
</details>
|
|
<h3>Methods</h3>
|
|
<dl>
|
|
<dt id="miplearn.problems.tsp.TravelingSalesmanGenerator.generate"><code class="name flex">
|
|
<span>def <span class="ident">generate</span></span>(<span>self, n_samples)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def generate(self, n_samples):
|
|
def _sample():
|
|
if self.fixed_cities is not None:
|
|
n, cities = self.fixed_n, self.fixed_cities
|
|
else:
|
|
n, cities = self._generate_cities()
|
|
distances = squareform(pdist(cities)) * self.gamma.rvs(size=(n, n))
|
|
distances = np.tril(distances) + np.triu(distances.T, 1)
|
|
if self.round:
|
|
distances = distances.round()
|
|
return TravelingSalesmanInstance(n, distances)
|
|
|
|
return [_sample() for _ in range(n_samples)]</code></pre>
|
|
</details>
|
|
</dd>
|
|
</dl>
|
|
</dd>
|
|
<dt id="miplearn.problems.tsp.TravelingSalesmanInstance"><code class="flex name class">
|
|
<span>class <span class="ident">TravelingSalesmanInstance</span></span>
|
|
<span>(</span><span>n_cities, distances)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"><p>An instance ot the Traveling Salesman Problem.</p>
|
|
<p>Given a list of cities and the distance between each pair of cities, the problem asks for the
|
|
shortest route starting at the first city, visiting each other city exactly once, then
|
|
returning to the first city. This problem is a generalization of the Hamiltonian path problem,
|
|
one of Karp's 21 NP-complete problems.</p></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">class TravelingSalesmanInstance(Instance):
|
|
"""An instance ot the Traveling Salesman Problem.
|
|
|
|
Given a list of cities and the distance between each pair of cities, the problem asks for the
|
|
shortest route starting at the first city, visiting each other city exactly once, then
|
|
returning to the first city. This problem is a generalization of the Hamiltonian path problem,
|
|
one of Karp's 21 NP-complete problems.
|
|
"""
|
|
|
|
def __init__(self, n_cities, distances):
|
|
assert isinstance(distances, np.ndarray)
|
|
assert distances.shape == (n_cities, n_cities)
|
|
self.n_cities = n_cities
|
|
self.distances = distances
|
|
|
|
def to_model(self):
|
|
model = pe.ConcreteModel()
|
|
model.edges = edges = [
|
|
(i, j) for i in range(self.n_cities) for j in range(i + 1, self.n_cities)
|
|
]
|
|
model.x = pe.Var(edges, domain=pe.Binary)
|
|
model.obj = pe.Objective(
|
|
expr=sum(model.x[i, j] * self.distances[i, j] for (i, j) in edges),
|
|
sense=pe.minimize,
|
|
)
|
|
model.eq_degree = pe.ConstraintList()
|
|
model.eq_subtour = pe.ConstraintList()
|
|
for i in range(self.n_cities):
|
|
model.eq_degree.add(
|
|
sum(
|
|
model.x[min(i, j), max(i, j)]
|
|
for j in range(self.n_cities)
|
|
if i != j
|
|
)
|
|
== 2
|
|
)
|
|
return model
|
|
|
|
def get_instance_features(self):
|
|
return np.array([1])
|
|
|
|
def get_variable_features(self, var_name, index):
|
|
return np.array([1])
|
|
|
|
def get_variable_category(self, var_name, index):
|
|
return index
|
|
|
|
def find_violated_lazy_constraints(self, model):
|
|
selected_edges = [e for e in model.edges if model.x[e].value > 0.5]
|
|
graph = nx.Graph()
|
|
graph.add_edges_from(selected_edges)
|
|
components = [frozenset(c) for c in list(nx.connected_components(graph))]
|
|
violations = []
|
|
for c in components:
|
|
if len(c) < self.n_cities:
|
|
violations += [c]
|
|
return violations
|
|
|
|
def build_lazy_constraint(self, model, component):
|
|
cut_edges = [
|
|
e
|
|
for e in model.edges
|
|
if (e[0] in component and e[1] not in component)
|
|
or (e[0] not in component and e[1] in component)
|
|
]
|
|
return model.eq_subtour.add(sum(model.x[e] for e in cut_edges) >= 2)
|
|
|
|
def find_violated_user_cuts(self, model):
|
|
return self.find_violated_lazy_constraints(model)
|
|
|
|
def build_user_cut(self, model, violation):
|
|
return self.build_lazy_constraint(model, violation)</code></pre>
|
|
</details>
|
|
<h3>Ancestors</h3>
|
|
<ul class="hlist">
|
|
<li><a title="miplearn.instance.Instance" href="../instance.html#miplearn.instance.Instance">Instance</a></li>
|
|
<li>abc.ABC</li>
|
|
</ul>
|
|
<h3>Methods</h3>
|
|
<dl>
|
|
<dt id="miplearn.problems.tsp.TravelingSalesmanInstance.build_user_cut"><code class="name flex">
|
|
<span>def <span class="ident">build_user_cut</span></span>(<span>self, model, violation)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def build_user_cut(self, model, violation):
|
|
return self.build_lazy_constraint(model, violation)</code></pre>
|
|
</details>
|
|
</dd>
|
|
<dt id="miplearn.problems.tsp.TravelingSalesmanInstance.find_violated_user_cuts"><code class="name flex">
|
|
<span>def <span class="ident">find_violated_user_cuts</span></span>(<span>self, model)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def find_violated_user_cuts(self, model):
|
|
return self.find_violated_lazy_constraints(model)</code></pre>
|
|
</details>
|
|
</dd>
|
|
</dl>
|
|
<h3>Inherited members</h3>
|
|
<ul class="hlist">
|
|
<li><code><b><a title="miplearn.instance.Instance" href="../instance.html#miplearn.instance.Instance">Instance</a></b></code>:
|
|
<ul class="hlist">
|
|
<li><code><a title="miplearn.instance.Instance.build_lazy_constraint" href="../instance.html#miplearn.instance.Instance.build_lazy_constraint">build_lazy_constraint</a></code></li>
|
|
<li><code><a title="miplearn.instance.Instance.find_violated_lazy_constraints" href="../instance.html#miplearn.instance.Instance.find_violated_lazy_constraints">find_violated_lazy_constraints</a></code></li>
|
|
<li><code><a title="miplearn.instance.Instance.get_instance_features" href="../instance.html#miplearn.instance.Instance.get_instance_features">get_instance_features</a></code></li>
|
|
<li><code><a title="miplearn.instance.Instance.get_variable_category" href="../instance.html#miplearn.instance.Instance.get_variable_category">get_variable_category</a></code></li>
|
|
<li><code><a title="miplearn.instance.Instance.get_variable_features" href="../instance.html#miplearn.instance.Instance.get_variable_features">get_variable_features</a></code></li>
|
|
<li><code><a title="miplearn.instance.Instance.to_model" href="../instance.html#miplearn.instance.Instance.to_model">to_model</a></code></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</dd>
|
|
</dl>
|
|
</section>
|
|
</article>
|
|
<nav id="sidebar">
|
|
<h1>Index</h1>
|
|
<div class="toc">
|
|
<ul></ul>
|
|
</div>
|
|
<ul id="index">
|
|
<li><h3>Super-module</h3>
|
|
<ul>
|
|
<li><code><a title="miplearn.problems" href="index.html">miplearn.problems</a></code></li>
|
|
</ul>
|
|
</li>
|
|
<li><h3><a href="#header-classes">Classes</a></h3>
|
|
<ul>
|
|
<li>
|
|
<h4><code><a title="miplearn.problems.tsp.ChallengeA" href="#miplearn.problems.tsp.ChallengeA">ChallengeA</a></code></h4>
|
|
</li>
|
|
<li>
|
|
<h4><code><a title="miplearn.problems.tsp.TravelingSalesmanGenerator" href="#miplearn.problems.tsp.TravelingSalesmanGenerator">TravelingSalesmanGenerator</a></code></h4>
|
|
<ul class="">
|
|
<li><code><a title="miplearn.problems.tsp.TravelingSalesmanGenerator.generate" href="#miplearn.problems.tsp.TravelingSalesmanGenerator.generate">generate</a></code></li>
|
|
</ul>
|
|
</li>
|
|
<li>
|
|
<h4><code><a title="miplearn.problems.tsp.TravelingSalesmanInstance" href="#miplearn.problems.tsp.TravelingSalesmanInstance">TravelingSalesmanInstance</a></code></h4>
|
|
<ul class="">
|
|
<li><code><a title="miplearn.problems.tsp.TravelingSalesmanInstance.build_user_cut" href="#miplearn.problems.tsp.TravelingSalesmanInstance.build_user_cut">build_user_cut</a></code></li>
|
|
<li><code><a title="miplearn.problems.tsp.TravelingSalesmanInstance.find_violated_user_cuts" href="#miplearn.problems.tsp.TravelingSalesmanInstance.find_violated_user_cuts">find_violated_user_cuts</a></code></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</nav>
|
|
</main>
|
|
<footer id="footer">
|
|
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.5</a>.</p>
|
|
</footer>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
|
|
<script>hljs.initHighlightingOnLoad()</script>
|
|
</body>
|
|
</html> |