You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/problems/stab.py

51 lines
1.6 KiB

# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
import numpy as np
import pyomo.environ as pe
import networkx as nx
from miplearn import Instance
import random
class MaxStableSetGenerator:
def __init__(self, graph, base_weights, perturbation_scale=1.0):
self.graph = graph
self.base_weights = base_weights
self.perturbation_scale = perturbation_scale
def generate(self):
perturbation = np.random.rand(self.graph.number_of_nodes()) * self.perturbation_scale
weights = self.base_weights + perturbation
return MaxStableSetInstance(self.graph, weights)
class MaxStableSetInstance(Instance):
def __init__(self, graph, weights):
self.graph = graph
self.weights = weights
self.model = None
def to_model(self):
nodes = list(self.graph.nodes)
edges = list(self.graph.edges)
self.model = model = pe.ConcreteModel()
model.x = pe.Var(nodes, domain=pe.Binary)
model.OBJ = pe.Objective(rule=lambda m : sum(m.x[v] * self.weights[v] for v in nodes),
sense=pe.maximize)
model.edge_eqs = pe.ConstraintList()
for edge in edges:
model.edge_eqs.add(model.x[edge[0]] + model.x[edge[1]] <= 1)
return model
def get_instance_features(self):
return np.array(self.weights)
def get_variable_features(self, var, index):
return np.ones(0)
def get_variable_category(self, var, index):
return index