You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/tests/__init__.py

317 lines
10 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Any, Dict, List
import numpy as np
from miplearn.features import Constraint, Variable, VariableFeatures
from miplearn.solvers.internal import InternalSolver
inf = float("inf")
# NOTE:
# This file is in the main source folder, so that it can be called from Julia.
def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constraint]:
for (cname, c) in constraints.items():
for attr in ["slack", "dual_value"]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
return constraints
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
for (cname, c) in vars.items():
for attr in [
"upper_bound",
"lower_bound",
"obj_coeff",
"value",
"reduced_cost",
"sa_obj_up",
"sa_obj_down",
"sa_ub_up",
"sa_ub_down",
"sa_lb_up",
"sa_lb_down",
]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
if c.alvarez_2017 is not None:
c.alvarez_2017 = list(np.round(c.alvarez_2017, 6))
return vars
def _round(obj: Any) -> Any:
if isinstance(obj, tuple):
if obj is None:
return None
return tuple([round(v, 6) for v in obj])
if isinstance(obj, VariableFeatures):
obj.reduced_costs = _round(obj.reduced_costs)
obj.sa_obj_up = _round(obj.sa_obj_up)
obj.sa_obj_down = _round(obj.sa_obj_down)
obj.sa_lb_up = _round(obj.sa_lb_up)
obj.sa_lb_down = _round(obj.sa_lb_down)
obj.sa_ub_up = _round(obj.sa_ub_up)
obj.sa_ub_down = _round(obj.sa_ub_down)
obj.values = _round(obj.values)
return obj
def _filter_attrs(allowed_keys: List[str], obj: Any) -> Any:
for key in obj.__dict__.keys():
if key not in allowed_keys:
setattr(obj, key, None)
return obj
def _remove_unsupported_constr_attrs(
solver: InternalSolver,
constraints: Dict[str, Constraint],
) -> Dict[str, Constraint]:
for (cname, c) in constraints.items():
to_remove = []
for k in c.__dict__.keys():
if k not in solver.get_constraint_attrs():
to_remove.append(k)
for k in to_remove:
setattr(c, k, None)
return constraints
def run_internal_solver_tests(solver: InternalSolver) -> None:
run_basic_usage_tests(solver.clone())
run_warm_start_tests(solver.clone())
run_infeasibility_tests(solver.clone())
run_iteration_cb_tests(solver.clone())
if solver.are_callbacks_supported():
run_lazy_cb_tests(solver.clone())
def run_basic_usage_tests(solver: InternalSolver) -> None:
# Create and set instance
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
# Fetch variables (after-load)
assert_equals(
solver.get_variables(),
VariableFeatures(
names=("x[0]", "x[1]", "x[2]", "x[3]", "z"),
lower_bounds=(0.0, 0.0, 0.0, 0.0, 0.0),
upper_bounds=(1.0, 1.0, 1.0, 1.0, 67.0),
types=("B", "B", "B", "B", "C"),
obj_coeffs=(505.0, 352.0, 458.0, 220.0, 0.0),
),
)
# Fetch constraints (after-load)
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0, "z": -1.0},
rhs=0.0,
sense="=",
)
},
)
# Solve linear programming relaxation
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats.lp_value is not None
assert_equals(round(lp_stats.lp_value, 3), 1287.923)
assert lp_stats.lp_log is not None
assert len(lp_stats.lp_log) > 100
assert lp_stats.lp_wallclock_time is not None
assert lp_stats.lp_wallclock_time > 0
# Fetch variables (after-lp)
assert_equals(
_round(solver.get_variables(with_static=False)),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(
basis_status=("U", "B", "U", "L", "U"),
reduced_costs=(193.615385, 0.0, 187.230769, -23.692308, 13.538462),
sa_lb_down=(-inf, -inf, -inf, -0.111111, -inf),
sa_lb_up=(1.0, 0.923077, 1.0, 1.0, 67.0),
sa_obj_down=(311.384615, 317.777778, 270.769231, -inf, -13.538462),
sa_obj_up=(inf, 570.869565, inf, 243.692308, inf),
sa_ub_down=(0.913043, 0.923077, 0.9, 0.0, 43.0),
sa_ub_up=(2.043478, inf, 2.2, inf, 69.0),
values=(1.0, 0.923077, 1.0, 0.0, 67.0),
),
),
)
# Fetch constraints (after-lp)
assert_equals(
_round_constraints(solver.get_constraints()),
_remove_unsupported_constr_attrs(
solver,
{
"eq_capacity": Constraint(
basis_status="N",
dual_value=13.538462,
lazy=False,
lhs={
"x[0]": 23.0,
"x[1]": 26.0,
"x[2]": 20.0,
"x[3]": 18.0,
"z": -1.0,
},
rhs=0.0,
sa_rhs_down=-24.0,
sa_rhs_up=1.9999999999999987,
sense="=",
slack=0.0,
)
},
),
)
# Solve MIP
mip_stats = solver.solve(
tee=True,
)
assert not solver.is_infeasible()
assert mip_stats.mip_log is not None
assert len(mip_stats.mip_log) > 100
assert mip_stats.mip_lower_bound is not None
assert_equals(mip_stats.mip_lower_bound, 1183.0)
assert mip_stats.mip_upper_bound is not None
assert_equals(mip_stats.mip_upper_bound, 1183.0)
assert mip_stats.mip_sense is not None
assert_equals(mip_stats.mip_sense, "max")
assert mip_stats.mip_wallclock_time is not None
assert isinstance(mip_stats.mip_wallclock_time, float)
assert mip_stats.mip_wallclock_time > 0
# Fetch variables (after-mip)
assert_equals(
_round(solver.get_variables(with_static=False)),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(values=(1.0, 0.0, 1.0, 1.0, 61.0)),
),
)
# Fetch constraints (after-mip)
assert_equals(
_round_constraints(solver.get_constraints(with_static=False)),
{"eq_capacity": Constraint(slack=0.0)},
)
# Build a new constraint
cut = Constraint(lhs={"x[0]": 1.0}, sense="<", rhs=0.0)
assert not solver.is_constraint_satisfied(cut)
# Add new constraint and verify that it is listed. Modifying the model should
# also clear the current solution.
solver.add_constraint(cut, "cut")
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0, "z": -1.0},
rhs=0.0,
sense="=",
),
"cut": Constraint(
lazy=False,
lhs={"x[0]": 1.0},
rhs=0.0,
sense="<",
),
},
)
# Re-solve MIP and verify that constraint affects the solution
stats = solver.solve()
assert_equals(stats.mip_lower_bound, 1030.0)
assert solver.is_constraint_satisfied(cut)
# Remove the new constraint
solver.remove_constraint("cut")
# New constraint should no longer affect solution
stats = solver.solve()
assert_equals(stats.mip_lower_bound, 1183.0)
def run_warm_start_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
if stats.mip_warm_start_value is not None:
assert_equals(stats.mip_warm_start_value, 725.0)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats.mip_warm_start_value is None
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert_equals(stats.mip_lower_bound, 725.0)
assert_equals(stats.mip_upper_bound, 725.0)
def run_infeasibility_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_infeasible()
solver.set_instance(instance)
mip_stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert mip_stats.mip_upper_bound is None
assert mip_stats.mip_lower_bound is None
lp_stats = solver.solve_lp()
assert solver.get_solution() is None
assert lp_stats.lp_value is None
def run_iteration_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
solver.set_instance(instance)
count = 0
def custom_iteration_cb() -> bool:
nonlocal count
count += 1
return count < 5
solver.solve(iteration_cb=custom_iteration_cb)
assert_equals(count, 5)
def run_lazy_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
relsol = cb_solver.get_solution()
assert relsol is not None
assert relsol["x[0]"] is not None
if relsol["x[0]"] > 0:
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
solver.set_instance(instance, model)
solver.solve(lazy_cb=lazy_cb)
solution = solver.get_solution()
assert solution is not None
assert_equals(solution["x[0]"], 0.0)
def assert_equals(left: Any, right: Any) -> None:
assert left == right, f"left:\n{left}\nright:\n{right}"