You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
644 lines
21 KiB
644 lines
21 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
import re
|
|
import sys
|
|
from io import StringIO
|
|
from typing import Any, List, Dict, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import pyomo
|
|
from overrides import overrides
|
|
from pyomo import environ as pe
|
|
from pyomo.core import Var, Suffix, Objective
|
|
from pyomo.core.base import _GeneralVarData
|
|
from pyomo.core.base.constraint import ConstraintList
|
|
from pyomo.core.expr.numeric_expr import SumExpression, MonomialTermExpression
|
|
from pyomo.opt import TerminationCondition
|
|
from pyomo.opt.base.solvers import SolverFactory
|
|
|
|
from miplearn.instance.base import Instance
|
|
from miplearn.solvers import _RedirectOutput, _none_if_empty
|
|
from miplearn.solvers.internal import (
|
|
InternalSolver,
|
|
LPSolveStats,
|
|
IterationCallback,
|
|
LazyCallback,
|
|
MIPSolveStats,
|
|
Variables,
|
|
Constraints,
|
|
)
|
|
from miplearn.types import (
|
|
SolverParams,
|
|
UserCutCallback,
|
|
Solution,
|
|
VariableName,
|
|
Category,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BasePyomoSolver(InternalSolver):
|
|
"""
|
|
Base class for all Pyomo solvers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
solver_factory: SolverFactory,
|
|
params: SolverParams,
|
|
) -> None:
|
|
self.instance: Optional[Instance] = None
|
|
self.model: Optional[pe.ConcreteModel] = None
|
|
self.params = params
|
|
self._all_vars: List[pe.Var] = []
|
|
self._bin_vars: List[pe.Var] = []
|
|
self._is_warm_start_available: bool = False
|
|
self._pyomo_solver: SolverFactory = solver_factory
|
|
self._obj_sense: str = "min"
|
|
self._varname_to_var: Dict[str, pe.Var] = {}
|
|
self._cname_to_constr: Dict[str, pe.Constraint] = {}
|
|
self._termination_condition: str = ""
|
|
self._has_lp_solution = False
|
|
self._has_mip_solution = False
|
|
self._obj: Dict[str, float] = {}
|
|
|
|
for (key, value) in params.items():
|
|
self._pyomo_solver.options[key] = value
|
|
|
|
def add_constraint(
|
|
self,
|
|
constr: Any,
|
|
) -> None:
|
|
assert self.model is not None
|
|
self._pyomo_solver.add_constraint(constr)
|
|
self._termination_condition = ""
|
|
self._has_lp_solution = False
|
|
self._has_mip_solution = False
|
|
|
|
@overrides
|
|
def add_constraints(self, cf: Constraints) -> None:
|
|
assert cf.names is not None
|
|
assert cf.senses is not None
|
|
assert cf.lhs is not None
|
|
assert cf.rhs is not None
|
|
assert self.model is not None
|
|
for (i, name) in enumerate(cf.names):
|
|
lhs = 0.0
|
|
for (varname, coeff) in cf.lhs[i]:
|
|
var = self._varname_to_var[varname]
|
|
lhs += var * coeff
|
|
if cf.senses[i] == "=":
|
|
expr = lhs == cf.rhs[i]
|
|
elif cf.senses[i] == "<":
|
|
expr = lhs <= cf.rhs[i]
|
|
else:
|
|
expr = lhs >= cf.rhs[i]
|
|
cl = pe.Constraint(expr=expr, name=name)
|
|
self.model.add_component(name, cl)
|
|
self._pyomo_solver.add_constraint(cl)
|
|
self._cname_to_constr[name] = cl
|
|
self._termination_condition = ""
|
|
self._has_lp_solution = False
|
|
self._has_mip_solution = False
|
|
|
|
@overrides
|
|
def are_callbacks_supported(self) -> bool:
|
|
return False
|
|
|
|
@overrides
|
|
def are_constraints_satisfied(
|
|
self,
|
|
cf: Constraints,
|
|
tol: float = 1e-5,
|
|
) -> List[bool]:
|
|
assert cf.names is not None
|
|
assert cf.lhs is not None
|
|
assert cf.rhs is not None
|
|
assert cf.senses is not None
|
|
result = []
|
|
for (i, name) in enumerate(cf.names):
|
|
lhs = 0.0
|
|
for (varname, coeff) in cf.lhs[i]:
|
|
var = self._varname_to_var[varname]
|
|
lhs += var.value * coeff
|
|
if cf.senses[i] == "<":
|
|
result.append(lhs <= cf.rhs[i] + tol)
|
|
elif cf.senses[i] == ">":
|
|
result.append(lhs >= cf.rhs[i] - tol)
|
|
else:
|
|
result.append(abs(cf.rhs[i] - lhs) < tol)
|
|
return result
|
|
|
|
@overrides
|
|
def build_test_instance_infeasible(self) -> Instance:
|
|
return PyomoTestInstanceInfeasible()
|
|
|
|
@overrides
|
|
def build_test_instance_knapsack(self) -> Instance:
|
|
return PyomoTestInstanceKnapsack(
|
|
weights=[23.0, 26.0, 20.0, 18.0],
|
|
prices=[505.0, 352.0, 458.0, 220.0],
|
|
capacity=67.0,
|
|
)
|
|
|
|
@overrides
|
|
def fix(self, solution: Solution) -> None:
|
|
for (varname, value) in solution.items():
|
|
if value is None:
|
|
continue
|
|
var = self._varname_to_var[varname]
|
|
var.fix(value)
|
|
self._pyomo_solver.update_var(var)
|
|
|
|
@overrides
|
|
def get_constraints(
|
|
self,
|
|
with_static: bool = True,
|
|
with_sa: bool = True,
|
|
with_lhs: bool = True,
|
|
) -> Constraints:
|
|
model = self.model
|
|
assert model is not None
|
|
|
|
names: List[str] = []
|
|
rhs: List[float] = []
|
|
lhs: List[List[Tuple[str, float]]] = []
|
|
senses: List[str] = []
|
|
dual_values: List[float] = []
|
|
slacks: List[float] = []
|
|
|
|
def _parse_constraint(c: pe.Constraint) -> None:
|
|
assert model is not None
|
|
if with_static:
|
|
# Extract RHS and sense
|
|
has_ub = c.has_ub()
|
|
has_lb = c.has_lb()
|
|
assert (
|
|
(not has_lb) or (not has_ub) or c.upper() == c.lower()
|
|
), "range constraints not supported"
|
|
if not has_ub:
|
|
senses.append(">")
|
|
rhs.append(float(c.lower()))
|
|
elif not has_lb:
|
|
senses.append("<")
|
|
rhs.append(float(c.upper()))
|
|
else:
|
|
senses.append("=")
|
|
rhs.append(float(c.upper()))
|
|
|
|
if with_lhs:
|
|
# Extract LHS
|
|
lhsc = []
|
|
expr = c.body
|
|
if isinstance(expr, SumExpression):
|
|
for term in expr._args_:
|
|
if isinstance(term, MonomialTermExpression):
|
|
lhsc.append(
|
|
(
|
|
term._args_[1].name,
|
|
float(term._args_[0]),
|
|
)
|
|
)
|
|
elif isinstance(term, _GeneralVarData):
|
|
lhsc.append((term.name, 1.0))
|
|
else:
|
|
raise Exception(
|
|
f"Unknown term type: {term.__class__.__name__}"
|
|
)
|
|
elif isinstance(expr, _GeneralVarData):
|
|
lhsc.append((expr.name, 1.0))
|
|
else:
|
|
raise Exception(
|
|
f"Unknown expression type: {expr.__class__.__name__}"
|
|
)
|
|
lhs.append(lhsc)
|
|
|
|
# Extract dual values
|
|
if self._has_lp_solution:
|
|
dual_values.append(model.dual[c])
|
|
|
|
# Extract slacks
|
|
if self._has_mip_solution or self._has_lp_solution:
|
|
slacks.append(model.slack[c])
|
|
|
|
for constr in model.component_objects(pyomo.core.Constraint):
|
|
if isinstance(constr, pe.ConstraintList):
|
|
for idx in constr:
|
|
names.append(f"{constr.name}[{idx}]")
|
|
_parse_constraint(constr[idx])
|
|
else:
|
|
names.append(constr.name)
|
|
_parse_constraint(constr)
|
|
|
|
return Constraints(
|
|
names=_none_if_empty(names),
|
|
rhs=_none_if_empty(rhs),
|
|
senses=_none_if_empty(senses),
|
|
lhs=_none_if_empty(lhs),
|
|
slacks=_none_if_empty(slacks),
|
|
dual_values=_none_if_empty(dual_values),
|
|
)
|
|
|
|
@overrides
|
|
def get_constraint_attrs(self) -> List[str]:
|
|
return [
|
|
"dual_values",
|
|
"lhs",
|
|
"names",
|
|
"rhs",
|
|
"senses",
|
|
"slacks",
|
|
]
|
|
|
|
@overrides
|
|
def get_solution(self) -> Optional[Solution]:
|
|
assert self.model is not None
|
|
if self.is_infeasible():
|
|
return None
|
|
solution: Solution = {}
|
|
for var in self.model.component_objects(Var):
|
|
for index in var:
|
|
if var[index].fixed:
|
|
continue
|
|
solution[f"{var}[{index}]"] = var[index].value
|
|
return solution
|
|
|
|
@overrides
|
|
def get_variables(
|
|
self,
|
|
with_static: bool = True,
|
|
with_sa: bool = True,
|
|
) -> Variables:
|
|
assert self.model is not None
|
|
|
|
names: List[str] = []
|
|
types: List[str] = []
|
|
upper_bounds: List[float] = []
|
|
lower_bounds: List[float] = []
|
|
obj_coeffs: List[float] = []
|
|
reduced_costs: List[float] = []
|
|
values: List[float] = []
|
|
|
|
for (i, var) in enumerate(self.model.component_objects(pyomo.core.Var)):
|
|
for idx in var:
|
|
v = var[idx]
|
|
|
|
# Variable name
|
|
if idx is None:
|
|
names.append(str(var))
|
|
else:
|
|
names.append(f"{var}[{idx}]")
|
|
|
|
if with_static:
|
|
# Variable type
|
|
if v.domain == pyomo.core.Binary:
|
|
types.append("B")
|
|
elif v.domain in [
|
|
pyomo.core.Reals,
|
|
pyomo.core.NonNegativeReals,
|
|
pyomo.core.NonPositiveReals,
|
|
pyomo.core.NegativeReals,
|
|
pyomo.core.PositiveReals,
|
|
]:
|
|
types.append("C")
|
|
else:
|
|
raise Exception(f"unknown variable domain: {v.domain}")
|
|
|
|
# Bounds
|
|
lb, ub = v.bounds
|
|
upper_bounds.append(float(ub))
|
|
lower_bounds.append(float(lb))
|
|
|
|
# Objective coefficient
|
|
if v.name in self._obj:
|
|
obj_coeffs.append(self._obj[v.name])
|
|
else:
|
|
obj_coeffs.append(0.0)
|
|
|
|
# Reduced costs
|
|
if self._has_lp_solution:
|
|
reduced_costs.append(self.model.rc[v])
|
|
|
|
# Values
|
|
if self._has_lp_solution or self._has_mip_solution:
|
|
values.append(v.value)
|
|
|
|
return Variables(
|
|
names=_none_if_empty(names),
|
|
types=_none_if_empty(types),
|
|
upper_bounds=_none_if_empty(np.array(upper_bounds, dtype=float)),
|
|
lower_bounds=_none_if_empty(np.array(lower_bounds, dtype=float)),
|
|
obj_coeffs=_none_if_empty(np.array(obj_coeffs, dtype=float)),
|
|
reduced_costs=_none_if_empty(np.array(reduced_costs, dtype=float)),
|
|
values=_none_if_empty(np.array(values, dtype=float)),
|
|
)
|
|
|
|
@overrides
|
|
def get_variable_attrs(self) -> List[str]:
|
|
return [
|
|
"names",
|
|
# "basis_status",
|
|
"categories",
|
|
"lower_bounds",
|
|
"obj_coeffs",
|
|
"reduced_costs",
|
|
# "sa_lb_down",
|
|
# "sa_lb_up",
|
|
# "sa_obj_down",
|
|
# "sa_obj_up",
|
|
# "sa_ub_down",
|
|
# "sa_ub_up",
|
|
"types",
|
|
"upper_bounds",
|
|
"user_features",
|
|
"values",
|
|
]
|
|
|
|
@overrides
|
|
def is_infeasible(self) -> bool:
|
|
return self._termination_condition == TerminationCondition.infeasible
|
|
|
|
@overrides
|
|
def remove_constraints(self, names: List[str]) -> None:
|
|
assert self.model is not None
|
|
for name in names:
|
|
constr = self._cname_to_constr[name]
|
|
del self._cname_to_constr[name]
|
|
self.model.del_component(constr)
|
|
self._pyomo_solver.remove_constraint(constr)
|
|
|
|
@overrides
|
|
def set_instance(
|
|
self,
|
|
instance: Instance,
|
|
model: Any = None,
|
|
) -> None:
|
|
if model is None:
|
|
model = instance.to_model()
|
|
assert isinstance(model, pe.ConcreteModel)
|
|
self.instance = instance
|
|
self.model = model
|
|
self.model.extra_constraints = ConstraintList()
|
|
self.model.dual = Suffix(direction=Suffix.IMPORT)
|
|
self.model.rc = Suffix(direction=Suffix.IMPORT)
|
|
self.model.slack = Suffix(direction=Suffix.IMPORT)
|
|
self._pyomo_solver.set_instance(model)
|
|
self._update_obj()
|
|
self._update_vars()
|
|
self._update_constrs()
|
|
|
|
@overrides
|
|
def set_warm_start(self, solution: Solution) -> None:
|
|
self._clear_warm_start()
|
|
count_fixed = 0
|
|
for (var_name, value) in solution.items():
|
|
if value is None:
|
|
continue
|
|
var = self._varname_to_var[var_name]
|
|
var.value = solution[var_name]
|
|
count_fixed += 1
|
|
if count_fixed > 0:
|
|
self._is_warm_start_available = True
|
|
|
|
@overrides
|
|
def solve(
|
|
self,
|
|
tee: bool = False,
|
|
iteration_cb: Optional[IterationCallback] = None,
|
|
lazy_cb: Optional[LazyCallback] = None,
|
|
user_cut_cb: Optional[UserCutCallback] = None,
|
|
) -> MIPSolveStats:
|
|
assert lazy_cb is None, "callbacks are not currently supported"
|
|
assert user_cut_cb is None, "callbacks are not currently supported"
|
|
total_wallclock_time = 0
|
|
streams: List[Any] = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
if iteration_cb is None:
|
|
iteration_cb = lambda: False
|
|
while True:
|
|
logger.debug("Solving MIP...")
|
|
with _RedirectOutput(streams):
|
|
results = self._pyomo_solver.solve(
|
|
tee=True,
|
|
warmstart=self._is_warm_start_available,
|
|
)
|
|
total_wallclock_time += results["Solver"][0]["Wallclock time"]
|
|
should_repeat = iteration_cb()
|
|
if not should_repeat:
|
|
break
|
|
log = streams[0].getvalue()
|
|
node_count = self._extract_node_count(log)
|
|
ws_value = self._extract_warm_start_value(log)
|
|
self._termination_condition = results["Solver"][0]["Termination condition"]
|
|
lb, ub = None, None
|
|
self._has_mip_solution = False
|
|
self._has_lp_solution = False
|
|
if not self.is_infeasible():
|
|
self._has_mip_solution = True
|
|
lb = results["Problem"][0]["Lower bound"]
|
|
ub = results["Problem"][0]["Upper bound"]
|
|
return MIPSolveStats(
|
|
mip_lower_bound=lb,
|
|
mip_upper_bound=ub,
|
|
mip_wallclock_time=total_wallclock_time,
|
|
mip_sense=self._obj_sense,
|
|
mip_log=log,
|
|
mip_nodes=node_count,
|
|
mip_warm_start_value=ws_value,
|
|
)
|
|
|
|
@overrides
|
|
def solve_lp(
|
|
self,
|
|
tee: bool = False,
|
|
) -> LPSolveStats:
|
|
self._relax()
|
|
streams: List[Any] = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
with _RedirectOutput(streams):
|
|
results = self._pyomo_solver.solve(tee=True)
|
|
self._termination_condition = results["Solver"][0]["Termination condition"]
|
|
self._restore_integrality()
|
|
opt_value = None
|
|
self._has_lp_solution = False
|
|
self._has_mip_solution = False
|
|
if not self.is_infeasible():
|
|
opt_value = results["Problem"][0]["Lower bound"]
|
|
self._has_lp_solution = True
|
|
return LPSolveStats(
|
|
lp_value=opt_value,
|
|
lp_log=streams[0].getvalue(),
|
|
lp_wallclock_time=results["Solver"][0]["Wallclock time"],
|
|
)
|
|
|
|
def _clear_warm_start(self) -> None:
|
|
for var in self._all_vars:
|
|
if not var.fixed:
|
|
var.value = None
|
|
self._is_warm_start_available = False
|
|
|
|
@staticmethod
|
|
def _extract(
|
|
log: str,
|
|
regexp: Optional[str],
|
|
default: Optional[str] = None,
|
|
) -> Optional[str]:
|
|
if regexp is None:
|
|
return default
|
|
value = default
|
|
for line in log.splitlines():
|
|
matches = re.findall(regexp, line)
|
|
if len(matches) == 0:
|
|
continue
|
|
value = matches[0]
|
|
return value
|
|
|
|
def _extract_node_count(self, log: str) -> Optional[int]:
|
|
value = self._extract(log, self._get_node_count_regexp())
|
|
if value is None:
|
|
return None
|
|
return int(value)
|
|
|
|
def _extract_warm_start_value(self, log: str) -> Optional[float]:
|
|
value = self._extract(log, self._get_warm_start_regexp())
|
|
if value is None:
|
|
return None
|
|
return float(value)
|
|
|
|
def _get_node_count_regexp(self) -> Optional[str]:
|
|
return None
|
|
|
|
def _get_warm_start_regexp(self) -> Optional[str]:
|
|
return None
|
|
|
|
def _parse_pyomo_expr(self, expr: Any) -> Dict[str, float]:
|
|
lhs = {}
|
|
if isinstance(expr, SumExpression):
|
|
for term in expr._args_:
|
|
if isinstance(term, MonomialTermExpression):
|
|
lhs[term._args_[1].name] = float(term._args_[0])
|
|
elif isinstance(term, _GeneralVarData):
|
|
lhs[term.name] = 1.0
|
|
else:
|
|
raise Exception(f"Unknown term type: {term.__class__.__name__}")
|
|
elif isinstance(expr, _GeneralVarData):
|
|
lhs[expr.name] = 1.0
|
|
else:
|
|
raise Exception(f"Unknown expression type: {expr.__class__.__name__}")
|
|
return lhs
|
|
|
|
def _relax(self) -> None:
|
|
for var in self._bin_vars:
|
|
lb, ub = var.bounds
|
|
var.setlb(lb)
|
|
var.setub(ub)
|
|
var.domain = pyomo.core.base.set_types.Reals
|
|
self._pyomo_solver.update_var(var)
|
|
|
|
def _restore_integrality(self) -> None:
|
|
for var in self._bin_vars:
|
|
var.domain = pyomo.core.base.set_types.Binary
|
|
self._pyomo_solver.update_var(var)
|
|
|
|
def _update_obj(self) -> None:
|
|
self._obj_sense = "max"
|
|
if self._pyomo_solver._objective.sense == pyomo.core.kernel.objective.minimize:
|
|
self._obj_sense = "min"
|
|
|
|
def _update_vars(self) -> None:
|
|
assert self.model is not None
|
|
self._all_vars = []
|
|
self._bin_vars = []
|
|
self._varname_to_var = {}
|
|
for var in self.model.component_objects(Var):
|
|
for idx in var:
|
|
varname = f"{var.name}[{idx}]"
|
|
if idx is None:
|
|
varname = var.name
|
|
self._varname_to_var[varname] = var[idx]
|
|
self._all_vars += [var[idx]]
|
|
if var[idx].domain == pyomo.core.base.set_types.Binary:
|
|
self._bin_vars += [var[idx]]
|
|
for obj in self.model.component_objects(Objective):
|
|
self._obj = self._parse_pyomo_expr(obj.expr)
|
|
break
|
|
|
|
def _update_constrs(self) -> None:
|
|
assert self.model is not None
|
|
self._cname_to_constr.clear()
|
|
for constr in self.model.component_objects(pyomo.core.Constraint):
|
|
if isinstance(constr, pe.ConstraintList):
|
|
for idx in constr:
|
|
self._cname_to_constr[f"{constr.name}[{idx}]"] = constr[idx]
|
|
else:
|
|
self._cname_to_constr[constr.name] = constr
|
|
|
|
|
|
class PyomoTestInstanceInfeasible(Instance):
|
|
@overrides
|
|
def to_model(self) -> pe.ConcreteModel:
|
|
model = pe.ConcreteModel()
|
|
model.x = pe.Var([0], domain=pe.Binary)
|
|
model.OBJ = pe.Objective(expr=model.x[0], sense=pe.maximize)
|
|
model.eq = pe.Constraint(expr=model.x[0] >= 2)
|
|
return model
|
|
|
|
|
|
class PyomoTestInstanceKnapsack(Instance):
|
|
"""
|
|
Simpler (one-dimensional) Knapsack Problem, used for testing.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
weights: List[float],
|
|
prices: List[float],
|
|
capacity: float,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weights = weights
|
|
self.prices = prices
|
|
self.capacity = capacity
|
|
|
|
@overrides
|
|
def to_model(self) -> pe.ConcreteModel:
|
|
model = pe.ConcreteModel()
|
|
items = range(len(self.weights))
|
|
model.x = pe.Var(items, domain=pe.Binary)
|
|
model.z = pe.Var(domain=pe.Reals, bounds=(0, self.capacity))
|
|
model.OBJ = pe.Objective(
|
|
expr=sum(model.x[v] * self.prices[v] for v in items),
|
|
sense=pe.maximize,
|
|
)
|
|
model.eq_capacity = pe.Constraint(
|
|
expr=sum(model.x[v] * self.weights[v] for v in items) == model.z
|
|
)
|
|
return model
|
|
|
|
@overrides
|
|
def get_instance_features(self) -> List[float]:
|
|
return [
|
|
self.capacity,
|
|
np.average(self.weights),
|
|
]
|
|
|
|
@overrides
|
|
def get_variable_features(self) -> Dict[str, List[float]]:
|
|
return {
|
|
f"x[{i}]": [
|
|
self.weights[i],
|
|
self.prices[i],
|
|
]
|
|
for i in range(len(self.weights))
|
|
}
|
|
|
|
@overrides
|
|
def get_variable_categories(self) -> Dict[str, str]:
|
|
return {f"x[{i}]": "default" for i in range(len(self.weights))}
|