You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/components/primal.py

249 lines
9.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from typing import (
Union,
Dict,
Callable,
List,
Hashable,
Optional,
Any,
TYPE_CHECKING,
Tuple,
cast,
)
import numpy as np
from tqdm.auto import tqdm
from miplearn.classifiers import Classifier
from miplearn.classifiers.adaptive import AdaptiveClassifier
from miplearn.classifiers.threshold import MinPrecisionThreshold, Threshold
from miplearn.components import classifier_evaluation_dict
from miplearn.components.component import Component
from miplearn.instance import Instance
from miplearn.types import (
TrainingSample,
Solution,
LearningSolveStats,
Features,
)
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from miplearn.solvers.learning import LearningSolver
class PrimalSolutionComponent(Component):
"""
A component that predicts the optimal primal values for the binary decision
variables.
In exact mode, predicted primal solutions are provided to the solver as MIP
starts. In heuristic mode, this component fixes the decision variables to their
predicted values.
"""
def __init__(
self,
classifier: Classifier = AdaptiveClassifier(),
mode: str = "exact",
threshold: Threshold = MinPrecisionThreshold([0.98, 0.98]),
) -> None:
assert isinstance(classifier, Classifier)
assert isinstance(threshold, Threshold)
assert mode in ["exact", "heuristic"]
self.mode = mode
self.classifiers: Dict[Hashable, Classifier] = {}
self.thresholds: Dict[Hashable, Threshold] = {}
self.threshold_prototype = threshold
self.classifier_prototype = classifier
def before_solve_mip(
self,
solver: "LearningSolver",
instance: Instance,
model: Any,
stats: LearningSolveStats,
features: Features,
training_data: TrainingSample,
) -> None:
if len(self.thresholds) > 0:
logger.info("Predicting MIP solution...")
solution = self.predict(
instance.features,
instance.training_data[-1],
)
# Update statistics
stats["Primal: Free"] = 0
stats["Primal: Zero"] = 0
stats["Primal: One"] = 0
for (var, var_dict) in solution.items():
for (idx, value) in var_dict.items():
if value is None:
stats["Primal: Free"] += 1
else:
if value < 0.5:
stats["Primal: Zero"] += 1
else:
stats["Primal: One"] += 1
logger.info(
f"Predicted: free: {stats['Primal: Free']}, "
f"zero: {stats['Primal: Zero']}, "
f"one: {stats['Primal: One']}"
)
# Provide solution to the solver
assert solver.internal_solver is not None
if self.mode == "heuristic":
solver.internal_solver.fix(solution)
else:
solver.internal_solver.set_warm_start(solution)
def fit_xy(
self,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
) -> None:
for category in x.keys():
clf = self.classifier_prototype.clone()
thr = self.threshold_prototype.clone()
clf.fit(x[category], y[category])
thr.fit(clf, x[category], y[category])
self.classifiers[category] = clf
self.thresholds[category] = thr
def predict(
self,
features: Features,
sample: TrainingSample,
) -> Solution:
# Initialize empty solution
solution: Solution = {}
for (var_name, var_dict) in features["Variables"].items():
solution[var_name] = {}
for idx in var_dict.keys():
solution[var_name][idx] = None
# Compute y_pred
x, _ = self.xy(features, sample)
y_pred = {}
for category in x.keys():
assert category in self.classifiers, (
f"Classifier for category {category} has not been trained. "
f"Please call component.fit before component.predict."
)
xc = np.array(x[category])
proba = self.classifiers[category].predict_proba(xc)
thr = self.thresholds[category].predict(xc)
y_pred[category] = np.vstack(
[
proba[:, 0] >= thr[0],
proba[:, 1] >= thr[1],
]
).T
# Convert y_pred into solution
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
for (var_name, var_dict) in features["Variables"].items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
offset = category_offset[category]
category_offset[category] += 1
if y_pred[category][offset, 0]:
solution[var_name][idx] = 0.0
if y_pred[category][offset, 1]:
solution[var_name][idx] = 1.0
return solution
def evaluate(self, instances):
ev = {"Fix zero": {}, "Fix one": {}}
for instance_idx in tqdm(
range(len(instances)),
desc="Evaluate (primal)",
):
instance = instances[instance_idx]
solution_actual = instance.training_data[0]["Solution"]
solution_pred = self.predict(instance, instance.training_data[0])
vars_all, vars_one, vars_zero = set(), set(), set()
pred_one_positive, pred_zero_positive = set(), set()
for (varname, var_dict) in solution_actual.items():
if varname not in solution_pred.keys():
continue
for (idx, value) in var_dict.items():
vars_all.add((varname, idx))
if value > 0.5:
vars_one.add((varname, idx))
else:
vars_zero.add((varname, idx))
if solution_pred[varname][idx] is not None:
if solution_pred[varname][idx] > 0.5:
pred_one_positive.add((varname, idx))
else:
pred_zero_positive.add((varname, idx))
pred_one_negative = vars_all - pred_one_positive
pred_zero_negative = vars_all - pred_zero_positive
tp_zero = len(pred_zero_positive & vars_zero)
fp_zero = len(pred_zero_positive & vars_one)
tn_zero = len(pred_zero_negative & vars_one)
fn_zero = len(pred_zero_negative & vars_zero)
tp_one = len(pred_one_positive & vars_one)
fp_one = len(pred_one_positive & vars_zero)
tn_one = len(pred_one_negative & vars_zero)
fn_one = len(pred_one_negative & vars_one)
ev["Fix zero"][instance_idx] = classifier_evaluation_dict(
tp_zero, tn_zero, fp_zero, fn_zero
)
ev["Fix one"][instance_idx] = classifier_evaluation_dict(
tp_one, tn_one, fp_one, fn_one
)
return ev
@staticmethod
def xy(
features: Features,
sample: TrainingSample,
) -> Tuple[Dict, Dict]:
x: Dict = {}
y: Dict = {}
solution: Optional[Solution] = None
if "Solution" in sample and sample["Solution"] is not None:
solution = sample["Solution"]
for (var_name, var_dict) in features["Variables"].items():
for (idx, var_features) in var_dict.items():
category = var_features["Category"]
if category is None:
continue
if category not in x.keys():
x[category] = []
y[category] = []
f: List[float] = []
assert var_features["User features"] is not None
f += var_features["User features"]
if "LP solution" in sample and sample["LP solution"] is not None:
lp_value = sample["LP solution"][var_name][idx]
if lp_value is not None:
f += [lp_value]
x[category] += [f]
if solution is not None:
opt_value = solution[var_name][idx]
assert opt_value is not None
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
f"Variable {var_name} has non-binary value {opt_value} in the "
"optimal solution. Predicting values of non-binary "
"variables is not currently supported. Please set its "
"category to None."
)
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
return x, y