You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
236 lines
8.4 KiB
236 lines
8.4 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
from typing import Optional, List
|
|
from p_tqdm import p_map
|
|
|
|
from .. import (ObjectiveValueComponent,
|
|
PrimalSolutionComponent,
|
|
DynamicLazyConstraintsComponent,
|
|
UserCutsComponent)
|
|
from .pyomo.cplex import CplexPyomoSolver
|
|
from .pyomo.gurobi import GurobiPyomoSolver
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Global memory for multiprocessing
|
|
SOLVER = [None] # type: List[Optional[LearningSolver]]
|
|
INSTANCES = [None] # type: List[Optional[dict]]
|
|
|
|
|
|
def _parallel_solve(instance_idx):
|
|
solver = deepcopy(SOLVER[0])
|
|
instance = INSTANCES[0][instance_idx]
|
|
results = solver.solve(instance)
|
|
return {
|
|
"Results": results,
|
|
"Solution": instance.solution,
|
|
"LP solution": instance.lp_solution,
|
|
"Violated lazy constraints": instance.found_violated_lazy_constraints,
|
|
"Violated user cuts": instance.found_violated_user_cuts,
|
|
}
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information
|
|
from previous runs, using Machine Learning methods, to accelerate the
|
|
solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
components=None,
|
|
gap_tolerance=None,
|
|
mode="exact",
|
|
solver="gurobi",
|
|
threads=None,
|
|
time_limit=None,
|
|
node_limit=None):
|
|
self.components = {}
|
|
self.mode = mode
|
|
self.internal_solver = None
|
|
self.internal_solver_factory = solver
|
|
self.threads = threads
|
|
self.time_limit = time_limit
|
|
self.gap_tolerance = gap_tolerance
|
|
self.tee = False
|
|
self.node_limit = node_limit
|
|
|
|
if components is not None:
|
|
for comp in components:
|
|
self.add(comp)
|
|
else:
|
|
self.add(ObjectiveValueComponent())
|
|
self.add(PrimalSolutionComponent())
|
|
self.add(DynamicLazyConstraintsComponent())
|
|
self.add(UserCutsComponent())
|
|
|
|
assert self.mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = self.mode
|
|
|
|
def _create_internal_solver(self):
|
|
logger.debug("Initializing %s" % self.internal_solver_factory)
|
|
if self.internal_solver_factory == "cplex":
|
|
solver = CplexPyomoSolver()
|
|
elif self.internal_solver_factory == "gurobi":
|
|
solver = GurobiPyomoSolver()
|
|
elif callable(self.internal_solver_factory):
|
|
solver = self.internal_solver_factory()
|
|
else:
|
|
solver = self.internal_solver_factory
|
|
if self.threads is not None:
|
|
solver.set_threads(self.threads)
|
|
if self.time_limit is not None:
|
|
solver.set_time_limit(self.time_limit)
|
|
if self.gap_tolerance is not None:
|
|
solver.set_gap_tolerance(self.gap_tolerance)
|
|
if self.node_limit is not None:
|
|
solver.set_node_limit(self.node_limit)
|
|
return solver
|
|
|
|
def solve(self,
|
|
instance,
|
|
model=None,
|
|
tee=False,
|
|
relaxation_only=False,
|
|
solve_lp_first=True):
|
|
"""
|
|
Solves the given instance. If trained machine-learning models are
|
|
available, they will be used to accelerate the solution process.
|
|
|
|
This method modifies the instance object. Specifically, the following
|
|
properties are set:
|
|
- instance.lp_solution
|
|
- instance.lp_value
|
|
- instance.lower_bound
|
|
- instance.upper_bound
|
|
- instance.solution
|
|
- instance.found_violated_lazy_constraints
|
|
- instance.solver_log
|
|
|
|
Additional solver components may set additional properties. Please
|
|
see their documentation for more details.
|
|
|
|
If `solve_lp_first` is False, the properties lp_solution and lp_value
|
|
will be set to dummy values.
|
|
|
|
Parameters
|
|
----------
|
|
instance: miplearn.Instance
|
|
The instance to be solved
|
|
model: pyomo.core.ConcreteModel
|
|
The corresponding Pyomo model. If not provided, it will be created.
|
|
tee: bool
|
|
If true, prints solver log to screen.
|
|
relaxation_only: bool
|
|
If true, solve only the root LP relaxation.
|
|
solve_lp_first: bool
|
|
If true, solve LP relaxation first, then solve original MILP. This
|
|
option should be activated if the LP relaxation is not very
|
|
expensive to solve and if it provides good hints for the integer
|
|
solution.
|
|
|
|
Returns
|
|
-------
|
|
dict
|
|
A dictionary of solver statistics containing at least the following
|
|
keys: "Lower bound", "Upper bound", "Wallclock time", "Nodes",
|
|
"Sense", "Log", "Warm start value" and "LP value".
|
|
|
|
Additional components may generate additional keys. For example,
|
|
ObjectiveValueComponent adds the keys "Predicted LB" and
|
|
"Predicted UB". See the documentation of each component for more
|
|
details.
|
|
"""
|
|
|
|
if model is None:
|
|
model = instance.to_model()
|
|
|
|
self.tee = tee
|
|
self.internal_solver = self._create_internal_solver()
|
|
self.internal_solver.set_instance(instance, model)
|
|
|
|
if solve_lp_first:
|
|
logger.info("Solving LP relaxation...")
|
|
results = self.internal_solver.solve_lp(tee=tee)
|
|
instance.lp_solution = self.internal_solver.get_solution()
|
|
instance.lp_value = results["Optimal value"]
|
|
else:
|
|
instance.lp_solution = self.internal_solver.get_empty_solution()
|
|
instance.lp_value = 0.0
|
|
|
|
logger.debug("Running before_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
if relaxation_only:
|
|
return results
|
|
|
|
def iteration_cb():
|
|
should_repeat = False
|
|
for component in self.components.values():
|
|
if component.after_iteration(self, instance, model):
|
|
should_repeat = True
|
|
return should_repeat
|
|
|
|
logger.info("Solving MILP...")
|
|
results = self.internal_solver.solve(tee=tee, iteration_cb=iteration_cb)
|
|
results["LP value"] = instance.lp_value
|
|
|
|
# Read MIP solution and bounds
|
|
instance.lower_bound = results["Lower bound"]
|
|
instance.upper_bound = results["Upper bound"]
|
|
instance.solver_log = results["Log"]
|
|
instance.solution = self.internal_solver.get_solution()
|
|
|
|
logger.debug("Calling after_solve callbacks...")
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model, results)
|
|
|
|
return results
|
|
|
|
def parallel_solve(self,
|
|
instances,
|
|
n_jobs=4,
|
|
label="Solve"):
|
|
|
|
self.internal_solver = None
|
|
SOLVER[0] = self
|
|
INSTANCES[0] = instances
|
|
p_map_results = p_map(_parallel_solve,
|
|
list(range(len(instances))),
|
|
num_cpus=n_jobs,
|
|
desc=label)
|
|
|
|
results = [p["Results"] for p in p_map_results]
|
|
for (idx, r) in enumerate(p_map_results):
|
|
instances[idx].solution = r["Solution"]
|
|
instances[idx].lp_solution = r["LP solution"]
|
|
instances[idx].lp_value = r["Results"]["LP value"]
|
|
instances[idx].lower_bound = r["Results"]["Lower bound"]
|
|
instances[idx].upper_bound = r["Results"]["Upper bound"]
|
|
instances[idx].found_violated_lazy_constraints = r["Violated lazy constraints"]
|
|
instances[idx].found_violated_user_cuts = r["Violated user cuts"]
|
|
instances[idx].solver_log = r["Results"]["Log"]
|
|
|
|
return results
|
|
|
|
def fit(self, training_instances):
|
|
if len(training_instances) == 0:
|
|
return
|
|
for component in self.components.values():
|
|
component.fit(training_instances)
|
|
|
|
def add(self, component):
|
|
name = component.__class__.__name__
|
|
self.components[name] = component
|
|
|
|
def __getstate__(self):
|
|
self.internal_solver = None
|
|
return self.__dict__
|