You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
5.5 KiB
182 lines
5.5 KiB
#!/usr/bin/env python
|
|
"""Benchmark script
|
|
|
|
Usage:
|
|
benchmark.py train <challenge>
|
|
benchmark.py test-baseline <challenge>
|
|
benchmark.py test-ml <challenge>
|
|
benchmark.py charts <challenge>
|
|
|
|
Options:
|
|
-h --help Show this screen
|
|
"""
|
|
from docopt import docopt
|
|
import importlib, pathlib
|
|
from miplearn import (LearningSolver,
|
|
BenchmarkRunner,
|
|
WarmStartComponent,
|
|
BranchPriorityComponent,
|
|
)
|
|
from numpy import median
|
|
import pyomo.environ as pe
|
|
import pickle
|
|
|
|
import logging
|
|
logging.getLogger('pyomo.core').setLevel(logging.ERROR)
|
|
|
|
args = docopt(__doc__)
|
|
basepath = args["<challenge>"]
|
|
pathlib.Path(basepath).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
def save(obj, filename):
|
|
print("Writing %s..." % filename)
|
|
with open(filename, "wb") as file:
|
|
pickle.dump(obj, file)
|
|
|
|
|
|
def load(filename):
|
|
import pickle
|
|
with open(filename, "rb") as file:
|
|
return pickle.load(file)
|
|
|
|
|
|
def train_solver_factory():
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
solver.options["threads"] = 4
|
|
solver.options["TimeLimit"] = 300
|
|
return solver
|
|
|
|
|
|
def test_solver_factory():
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
solver.options["threads"] = 4
|
|
solver.options["TimeLimit"] = 300
|
|
return solver
|
|
|
|
|
|
def train():
|
|
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
pkg = importlib.import_module("miplearn.problems.%s" % problem_name)
|
|
challenge = getattr(pkg, challenge_name)()
|
|
train_instances = challenge.training_instances
|
|
test_instances = challenge.test_instances
|
|
solver = LearningSolver(
|
|
internal_solver_factory=train_solver_factory,
|
|
components={
|
|
"warm-start": WarmStartComponent(),
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
},
|
|
)
|
|
solver.parallel_solve(train_instances, n_jobs=10)
|
|
solver.fit(n_jobs=10)
|
|
solver.save_state("%s/training_data.bin" % basepath)
|
|
save(train_instances, "%s/train_instances.bin" % basepath)
|
|
save(test_instances, "%s/test_instances.bin" % basepath)
|
|
|
|
|
|
def test_baseline():
|
|
solvers = {
|
|
"baseline": LearningSolver(
|
|
internal_solver_factory=test_solver_factory,
|
|
components={},
|
|
),
|
|
}
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
benchmark = BenchmarkRunner(solvers)
|
|
benchmark.parallel_solve(test_instances, n_jobs=10)
|
|
benchmark.save_results("%s/benchmark_baseline.csv" % basepath)
|
|
|
|
|
|
def test_ml():
|
|
solvers = {
|
|
"ml-exact": LearningSolver(
|
|
internal_solver_factory=test_solver_factory,
|
|
components={
|
|
"warm-start": WarmStartComponent(),
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
},
|
|
),
|
|
"ml-heuristic": LearningSolver(
|
|
internal_solver_factory=test_solver_factory,
|
|
mode="heuristic",
|
|
components={
|
|
"warm-start": WarmStartComponent(),
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
},
|
|
),
|
|
}
|
|
test_instances = load("%s/test_instances.bin" % basepath)
|
|
benchmark = BenchmarkRunner(solvers)
|
|
benchmark.load_state("%s/training_data.bin" % basepath)
|
|
benchmark.load_results("%s/benchmark_baseline.csv" % basepath)
|
|
benchmark.parallel_solve(test_instances, n_jobs=10)
|
|
benchmark.save_results("%s/benchmark_ml.csv" % basepath)
|
|
|
|
|
|
def charts():
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
sns.set_style("whitegrid")
|
|
sns.set_palette("Blues_r")
|
|
benchmark = BenchmarkRunner({})
|
|
benchmark.load_results("%s/benchmark_ml.csv" % basepath)
|
|
results = benchmark.raw_results()
|
|
results["Gap (%)"] = results["Gap"] * 100.0
|
|
palette={
|
|
"baseline": "#9b59b6",
|
|
"ml-exact": "#3498db",
|
|
"ml-heuristic": "#95a5a6"
|
|
}
|
|
fig, axes = plt.subplots(nrows=1,
|
|
ncols=3,
|
|
figsize=(10,4),
|
|
gridspec_kw={'width_ratios': [3, 3, 2]},
|
|
)
|
|
sns.stripplot(x="Solver",
|
|
y="Wallclock Time",
|
|
data=results,
|
|
ax=axes[0],
|
|
jitter=0.25,
|
|
palette=palette,
|
|
);
|
|
sns.barplot(x="Solver",
|
|
y="Wallclock Time",
|
|
data=results,
|
|
ax=axes[0],
|
|
errwidth=0.,
|
|
alpha=0.3,
|
|
palette=palette,
|
|
estimator=median,
|
|
);
|
|
axes[0].set(ylabel='Wallclock Time (s)')
|
|
axes[1].set_ylim(-0.5, 5.5)
|
|
sns.stripplot(x="Solver",
|
|
y="Gap (%)",
|
|
jitter=0.25,
|
|
data=results[results["Solver"] != "ml-heuristic"],
|
|
ax=axes[1],
|
|
palette=palette,
|
|
);
|
|
axes[2].set_ylim(0.95,1.01)
|
|
sns.stripplot(x="Solver",
|
|
y="Relative Lower Bound",
|
|
jitter=0.25,
|
|
data=results[results["Solver"] == "ml-heuristic"],
|
|
ax=axes[2],
|
|
palette=palette,
|
|
);
|
|
fig.tight_layout()
|
|
plt.savefig("%s/performance.png" % basepath,
|
|
bbox_inches='tight',
|
|
dpi=150)
|
|
|
|
if __name__ == "__main__":
|
|
if args["train"]:
|
|
train()
|
|
if args["test-baseline"]:
|
|
test_baseline()
|
|
if args["test-ml"]:
|
|
test_ml()
|
|
if args["charts"]:
|
|
charts() |