You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
9.7 KiB
272 lines
9.7 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from . import WarmStartComponent, BranchPriorityComponent
|
|
import pyomo.environ as pe
|
|
from pyomo.core import Var
|
|
from copy import deepcopy
|
|
import pickle
|
|
from scipy.stats import randint
|
|
from p_tqdm import p_map
|
|
import logging
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class InternalSolver():
|
|
def __init__():
|
|
pass
|
|
|
|
def solve_lp(self, model, tee=False):
|
|
from pyomo.core.base.set_types import Reals
|
|
original_domain = {}
|
|
for var in model.component_data_objects(Var):
|
|
original_domain[str(var)] = var.domain
|
|
lb, ub = var.bounds
|
|
var.setlb(lb)
|
|
var.setub(ub)
|
|
var.domain = Reals
|
|
self.solver.set_instance(model)
|
|
self.solver.solve(tee=True)
|
|
for var in model.component_data_objects(Var):
|
|
var.domain = original_domain[str(var)]
|
|
|
|
def clear_values(self, model):
|
|
for var in model.component_objects(Var):
|
|
for index in var:
|
|
var[index].value = None
|
|
|
|
def get_solution(self, model):
|
|
solution = {}
|
|
for var in model.component_objects(Var):
|
|
solution[str(var)] = {}
|
|
for index in var:
|
|
solution[str(var)][index] = var[index].value
|
|
return solution
|
|
|
|
|
|
class GurobiSolver(InternalSolver):
|
|
def __init__(self):
|
|
self.solver = pe.SolverFactory('gurobi_persistent')
|
|
self.solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
|
|
def set_threads(self, threads):
|
|
self.solver.options["Threads"] = threads
|
|
|
|
def set_time_limit(self, time_limit):
|
|
self.solver.options["TimeLimit"] = time_limit
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
self.solver.options["MIPGap"] = gap_tolerance
|
|
|
|
def solve(self, model, tee=False, warmstart=False):
|
|
self.solver.set_instance(model)
|
|
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
return {
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
|
"Nodes": self.solver._solver_model.getAttr("NodeCount"),
|
|
}
|
|
|
|
def _load_vars(self):
|
|
var_map = self._pyomo_var_to_solver_var_map
|
|
ref_vars = self._referenced_variables
|
|
vars_to_load = var_map.keys()
|
|
|
|
gurobi_vars_to_load = [var_map[pyomo_var] for pyomo_var in vars_to_load]
|
|
vals = self._solver_model.getAttr("X", gurobi_vars_to_load)
|
|
|
|
for var, val in zip(vars_to_load, vals):
|
|
if ref_vars[var] > 0:
|
|
var.stale = False
|
|
var.value = val
|
|
|
|
|
|
class CPLEXSolver(InternalSolver):
|
|
def __init__(self):
|
|
import cplex
|
|
self.solver = pe.SolverFactory('cplex_persistent')
|
|
self.solver.options["randomseed"] = randint(low=0, high=1000).rvs()
|
|
|
|
def set_threads(self, threads):
|
|
self.solver.options["threads"] = threads
|
|
|
|
def set_time_limit(self, time_limit):
|
|
self.solver.options["timelimit"] = time_limit
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
self.solver.options["mip_tolerances_mipgap"] = gap_tolerance
|
|
|
|
def solve(self, model, tee=False, warmstart=False):
|
|
self.solver.set_instance(model)
|
|
results = self.solver.solve(tee=tee, warmstart=warmstart)
|
|
return {
|
|
"Lower bound": results["Problem"][0]["Lower bound"],
|
|
"Upper bound": results["Problem"][0]["Upper bound"],
|
|
"Wallclock time": results["Solver"][0]["Wallclock time"],
|
|
"Nodes": 1,
|
|
}
|
|
|
|
def solve_lp(self, model, tee=False):
|
|
import cplex
|
|
self.solver.set_instance(model)
|
|
lp = self.solver._solver_model
|
|
var_types = lp.variables.get_types()
|
|
n_vars = len(var_types)
|
|
lp.set_problem_type(cplex.Cplex.problem_type.LP)
|
|
results = self.solver.solve(tee=tee)
|
|
lp.variables.set_types(zip(range(n_vars), var_types))
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
|
|
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
components=None,
|
|
gap_tolerance=None,
|
|
mode="exact",
|
|
solver="gurobi",
|
|
threads=4,
|
|
time_limit=None,
|
|
):
|
|
|
|
self.is_persistent = None
|
|
self.components = components
|
|
self.mode = mode
|
|
self.internal_solver = None
|
|
self.internal_solver_factory = solver
|
|
self.threads = threads
|
|
self.time_limit = time_limit
|
|
self.gap_tolerance = gap_tolerance
|
|
self.tee = False
|
|
|
|
if self.components is not None:
|
|
assert isinstance(self.components, dict)
|
|
else:
|
|
self.components = {
|
|
"warm-start": WarmStartComponent(),
|
|
}
|
|
|
|
assert self.mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = self.mode
|
|
|
|
def _create_internal_solver(self):
|
|
if self.internal_solver_factory == "cplex":
|
|
solver = CPLEXSolver()
|
|
elif self.internal_solver_factory == "gurobi":
|
|
solver = GurobiSolver()
|
|
else:
|
|
raise Exception("solver %s not supported" % solver_factory)
|
|
solver.set_threads(self.threads)
|
|
if self.time_limit is not None:
|
|
solver.set_time_limit(self.time_limit)
|
|
if self.gap_tolerance is not None:
|
|
solver.set_gap_tolerance(self.gap_tolerance)
|
|
return solver
|
|
|
|
def solve(self, instance, model=None, tee=False):
|
|
if model is None:
|
|
model = instance.to_model()
|
|
|
|
self.tee = tee
|
|
self.internal_solver = self._create_internal_solver()
|
|
|
|
# Solve LP relaxation
|
|
self.internal_solver.solve_lp(model, tee=tee)
|
|
instance.lp_solution = self.internal_solver.get_solution(model)
|
|
|
|
# Invoke before_solve callbacks
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
# Check if warm start is available
|
|
is_warm_start_available = False
|
|
if "warm-start" in self.components.keys():
|
|
if self.components["warm-start"].is_warm_start_available:
|
|
is_warm_start_available = True
|
|
|
|
# Solver original MIP
|
|
self.internal_solver.clear_values(model)
|
|
results = self.internal_solver.solve(model,
|
|
tee=tee,
|
|
warmstart=is_warm_start_available)
|
|
|
|
# Read MIP solution and bounds
|
|
instance.lower_bound = results["Lower bound"]
|
|
instance.upper_bound = results["Upper bound"]
|
|
instance.solution = self.internal_solver.get_solution(model)
|
|
|
|
# Invoke after_solve callbacks
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model)
|
|
|
|
return results
|
|
|
|
def parallel_solve(self,
|
|
instances,
|
|
n_jobs=4,
|
|
label="Solve",
|
|
collect_training_data=True,
|
|
):
|
|
self.internal_solver = None
|
|
|
|
def _process(instance):
|
|
solver = deepcopy(self)
|
|
results = solver.solve(instance)
|
|
solver.internal_solver = None
|
|
if not collect_training_data:
|
|
solver.components = {}
|
|
return {
|
|
"Solver": solver,
|
|
"Results": results,
|
|
"Solution": instance.solution,
|
|
"LP solution": instance.lp_solution,
|
|
"Upper bound": instance.upper_bound,
|
|
"Lower bound": instance.lower_bound,
|
|
}
|
|
|
|
p_map_results = p_map(_process, instances, num_cpus=n_jobs, desc=label)
|
|
subsolvers = [p["Solver"] for p in p_map_results]
|
|
results = [p["Results"] for p in p_map_results]
|
|
|
|
for (idx, r) in enumerate(p_map_results):
|
|
instances[idx].solution = r["Solution"]
|
|
instances[idx].lp_solution = r["LP solution"]
|
|
instances[idx].lower_bound = r["Lower bound"]
|
|
instances[idx].upper_bound = r["Upper bound"]
|
|
|
|
for (name, component) in self.components.items():
|
|
subcomponents = [subsolver.components[name]
|
|
for subsolver in subsolvers
|
|
if name in subsolver.components.keys()]
|
|
self.components[name].merge(subcomponents)
|
|
|
|
return results
|
|
|
|
def fit(self, n_jobs=1):
|
|
for component in self.components.values():
|
|
component.fit(self, n_jobs=n_jobs)
|
|
|
|
def save_state(self, filename):
|
|
with open(filename, "wb") as file:
|
|
pickle.dump({
|
|
"version": 2,
|
|
"components": self.components,
|
|
}, file)
|
|
|
|
def load_state(self, filename):
|
|
with open(filename, "rb") as file:
|
|
data = pickle.load(file)
|
|
assert data["version"] == 2
|
|
for (component_name, component) in data["components"].items():
|
|
if component_name not in self.components.keys():
|
|
continue
|
|
else:
|
|
self.components[component_name].merge([component])
|
|
|