You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/0.3/api/collectors/index.html

407 lines
27 KiB

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>10. Collectors &amp; Extractors &#8212; MIPLearn 0.3</title>
<link href="../../_static/css/theme.css" rel="stylesheet" />
<link href="../../_static/css/index.c5995385ac14fb8791e8eb36b4908be2.css" rel="stylesheet" />
<link rel="stylesheet"
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/sphinx-book-theme.acff12b8f9c144ce68a297486a2fa670.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../_static/custom.css" />
<link rel="preload" as="script" href="../../_static/js/index.1c5a1a01449ed65a7b51.js">
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script src="../../_static/sphinx-book-theme.12a9622fbb08dcb3a2a40b2c02b83a57.js"></script>
<link rel="index" title="Index" href="../../genindex/" />
<link rel="search" title="Search" href="../../search/" />
<link rel="next" title="11. Components" href="../components/" />
<link rel="prev" title="9. Benchmark Problems" href="../problems/" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="en" />
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<div class="container-xl">
<div class="row">
<div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
<div class="navbar-brand-box">
<a class="navbar-brand text-wrap" href="../../">
<h1 class="site-logo" id="site-title">MIPLearn 0.3</h1>
</a>
</div><form class="bd-search d-flex align-items-center" action="../../search/" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
<p class="caption">
<span class="caption-text">
Tutorials
</span>
</p>
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="../../tutorials/getting-started-pyomo/">
1. Getting started (Pyomo)
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../tutorials/getting-started-gurobipy/">
2. Getting started (Gurobipy)
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../tutorials/getting-started-jump/">
3. Getting started (JuMP)
</a>
</li>
</ul>
<p class="caption">
<span class="caption-text">
User Guide
</span>
</p>
<ul class="nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="../../guide/problems/">
4. Benchmark Problems
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../guide/collectors/">
5. Training Data Collectors
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../guide/features/">
6. Feature Extractors
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../guide/primal/">
7. Primal Components
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../../guide/solvers/">
8. Learning Solver
</a>
</li>
</ul>
<p class="caption">
<span class="caption-text">
Python API Reference
</span>
</p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1">
<a class="reference internal" href="../problems/">
9. Benchmark Problems
</a>
</li>
<li class="toctree-l1 current active">
<a class="current reference internal" href="#">
10. Collectors &amp; Extractors
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../components/">
11. Components
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../solvers/">
12. Solvers
</a>
</li>
<li class="toctree-l1">
<a class="reference internal" href="../helpers/">
13. Helpers
</a>
</li>
</ul>
</div>
</nav> <!-- To handle the deprecated key -->
</div>
<main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
<div class="topbar container-xl fixed-top">
<div class="topbar-contents row">
<div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
<div class="col pl-md-4 topbar-main">
<button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
title="Toggle navigation" data-toggle="tooltip" data-placement="left">
<i class="fas fa-bars"></i>
<i class="fas fa-arrow-left"></i>
<i class="fas fa-arrow-up"></i>
</button>
<div class="dropdown-buttons-trigger">
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
class="fas fa-download"></i></button>
<div class="dropdown-buttons">
<!-- ipynb file if we had a myst markdown file -->
<!-- Download raw file -->
<a class="dropdown-buttons" href="../../_sources/api/collectors.rst.txt"><button type="button"
class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
data-placement="left">.rst</button></a>
<!-- Download PDF via print -->
<button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
onClick="window.print()" data-toggle="tooltip" data-placement="left">.pdf</button>
</div>
</div>
<!-- Source interaction buttons -->
<!-- Full screen (wrap in <a> to have style consistency -->
<a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
title="Fullscreen mode"><i
class="fas fa-expand"></i></button></a>
<!-- Launch buttons -->
</div>
<!-- Table of contents -->
<div class="d-none d-md-block col-md-2 bd-toc show">
<div class="tocsection onthispage pt-5 pb-3">
<i class="fas fa-list"></i> Contents
</div>
<nav id="bd-toc-nav">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#module-miplearn.classifiers.minprob">
10.1. miplearn.classifiers.minprob
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#module-miplearn.classifiers.singleclass">
10.2. miplearn.classifiers.singleclass
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#module-miplearn.collectors.basic">
10.3. miplearn.collectors.basic
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#module-miplearn.extractors.fields">
10.4. miplearn.extractors.fields
</a>
</li>
<li class="toc-h2 nav-item toc-entry">
<a class="reference internal nav-link" href="#module-miplearn.extractors.AlvLouWeh2017">
10.5. miplearn.extractors.AlvLouWeh2017
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div id="main-content" class="row">
<div class="col-12 col-md-9 pl-md-3 pr-md-0">
<div>
<div class="section" id="collectors-extractors">
<h1><span class="section-number">10. </span>Collectors &amp; Extractors<a class="headerlink" href="#collectors-extractors" title="Permalink to this headline"></a></h1>
<div class="section" id="module-miplearn.classifiers.minprob">
<span id="miplearn-classifiers-minprob"></span><h2><span class="section-number">10.1. </span>miplearn.classifiers.minprob<a class="headerlink" href="#module-miplearn.classifiers.minprob" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="miplearn.classifiers.minprob.MinProbabilityClassifier">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">miplearn.classifiers.minprob.</span></code><code class="sig-name descname"><span class="pre">MinProbabilityClassifier</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="pre">base_clf:</span> <span class="pre">Any,</span> <span class="pre">thresholds:</span> <span class="pre">List[float],</span> <span class="pre">clone_fn:</span> <span class="pre">Callable[[Any],</span> <span class="pre">Any]</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">clone&gt;</span></em><span class="sig-paren">)</span><a class="headerlink" href="#miplearn.classifiers.minprob.MinProbabilityClassifier" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.base.BaseEstimator</span></code></p>
<p>Meta-classifier that returns NaN for predictions made by a base classifier that
have probability below a given threshold. More specifically, this meta-classifier
calls base_clf.predict_proba and compares the result against the provided
thresholds. If the probability for one of the classes is above its threshold,
the meta-classifier returns that prediction. Otherwise, it returns NaN.</p>
<dl class="py method">
<dt id="miplearn.classifiers.minprob.MinProbabilityClassifier.fit">
<code class="sig-name descname"><span class="pre">fit</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">None</span><a class="headerlink" href="#miplearn.classifiers.minprob.MinProbabilityClassifier.fit" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.classifiers.minprob.MinProbabilityClassifier.predict">
<code class="sig-name descname"><span class="pre">predict</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.classifiers.minprob.MinProbabilityClassifier.predict" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-miplearn.classifiers.singleclass">
<span id="miplearn-classifiers-singleclass"></span><h2><span class="section-number">10.2. </span>miplearn.classifiers.singleclass<a class="headerlink" href="#module-miplearn.classifiers.singleclass" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="miplearn.classifiers.singleclass.SingleClassFix">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">miplearn.classifiers.singleclass.</span></code><code class="sig-name descname"><span class="pre">SingleClassFix</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="pre">base_clf:</span> <span class="pre">sklearn.base.BaseEstimator</span></em>, <em class="sig-param"><span class="pre">clone_fn:</span> <span class="pre">Callable</span> <span class="pre">=</span> <span class="pre">&lt;function</span> <span class="pre">clone&gt;</span></em><span class="sig-paren">)</span><a class="headerlink" href="#miplearn.classifiers.singleclass.SingleClassFix" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">sklearn.base.BaseEstimator</span></code></p>
<p>Some sklearn classifiers, such as logistic regression, have issues with datasets
that contain a single class. This meta-classifier fixes the issue. If the
training data contains a single class, this meta-classifier always returns that
class as a prediction. Otherwise, it fits the provided base classifier,
and returns its predictions instead.</p>
<dl class="py method">
<dt id="miplearn.classifiers.singleclass.SingleClassFix.fit">
<code class="sig-name descname"><span class="pre">fit</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">None</span><a class="headerlink" href="#miplearn.classifiers.singleclass.SingleClassFix.fit" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.classifiers.singleclass.SingleClassFix.predict">
<code class="sig-name descname"><span class="pre">predict</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.classifiers.singleclass.SingleClassFix.predict" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-miplearn.collectors.basic">
<span id="miplearn-collectors-basic"></span><h2><span class="section-number">10.3. </span>miplearn.collectors.basic<a class="headerlink" href="#module-miplearn.collectors.basic" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="miplearn.collectors.basic.BasicCollector">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">miplearn.collectors.basic.</span></code><code class="sig-name descname"><span class="pre">BasicCollector</span></code><a class="headerlink" href="#miplearn.collectors.basic.BasicCollector" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<dl class="py method">
<dt id="miplearn.collectors.basic.BasicCollector.collect">
<code class="sig-name descname"><span class="pre">collect</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">filenames</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span></em>, <em class="sig-param"><span class="n"><span class="pre">build_model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Callable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">progress</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">None</span><a class="headerlink" href="#miplearn.collectors.basic.BasicCollector.collect" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-miplearn.extractors.fields">
<span id="miplearn-extractors-fields"></span><h2><span class="section-number">10.4. </span>miplearn.extractors.fields<a class="headerlink" href="#module-miplearn.extractors.fields" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="miplearn.extractors.fields.H5FieldsExtractor">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">miplearn.extractors.fields.</span></code><code class="sig-name descname"><span class="pre">H5FieldsExtractor</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instance_fields</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var_fields</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">constr_fields</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">List</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#miplearn.extractors.fields.H5FieldsExtractor" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">miplearn.extractors.abstract.FeaturesExtractor</span></code></p>
<dl class="py method">
<dt id="miplearn.extractors.fields.H5FieldsExtractor.get_constr_features">
<code class="sig-name descname"><span class="pre">get_constr_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.fields.H5FieldsExtractor.get_constr_features" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.extractors.fields.H5FieldsExtractor.get_instance_features">
<code class="sig-name descname"><span class="pre">get_instance_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.fields.H5FieldsExtractor.get_instance_features" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.extractors.fields.H5FieldsExtractor.get_var_features">
<code class="sig-name descname"><span class="pre">get_var_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.fields.H5FieldsExtractor.get_var_features" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-miplearn.extractors.AlvLouWeh2017">
<span id="miplearn-extractors-alvlouweh2017"></span><h2><span class="section-number">10.5. </span>miplearn.extractors.AlvLouWeh2017<a class="headerlink" href="#module-miplearn.extractors.AlvLouWeh2017" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor">
<em class="property"><span class="pre">class</span> </em><code class="sig-prename descclassname"><span class="pre">miplearn.extractors.AlvLouWeh2017.</span></code><code class="sig-name descname"><span class="pre">AlvLouWeh2017Extractor</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">with_m1</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">with_m2</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">with_m3</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">miplearn.extractors.abstract.FeaturesExtractor</span></code></p>
<dl class="py method">
<dt id="miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_constr_features">
<code class="sig-name descname"><span class="pre">get_constr_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_constr_features" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_instance_features">
<code class="sig-name descname"><span class="pre">get_instance_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_instance_features" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_var_features">
<code class="sig-name descname"><span class="pre">get_var_features</span></code><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">h5</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="../helpers/#miplearn.h5.H5File" title="miplearn.h5.H5File"><span class="pre">miplearn.h5.H5File</span></a></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">numpy.ndarray</span><a class="headerlink" href="#miplearn.extractors.AlvLouWeh2017.AlvLouWeh2017Extractor.get_var_features" title="Permalink to this definition"></a></dt>
<dd><dl class="simple">
<dt>Computes static variable features described in:</dt><dd><p>Alvarez, A. M., Louveaux, Q., &amp; Wehenkel, L. (2017). A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1),
185-195.</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
</div>
</div>
<div class='prev-next-bottom'>
<a class='left-prev' id="prev-link" href="../problems/" title="previous page"><span class="section-number">9. </span>Benchmark Problems</a>
<a class='right-next' id="next-link" href="../components/" title="next page"><span class="section-number">11. </span>Components</a>
</div>
</div>
</div>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<p>
&copy; Copyright 2020-2023, UChicago Argonne, LLC.<br/>
</p>
</div>
</footer>
</main>
</div>
</div>
<script src="../../_static/js/index.1c5a1a01449ed65a7b51.js"></script>
</body>
</html>