You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
20 KiB
365 lines
20 KiB
<!doctype html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
|
|
<meta name="generator" content="pdoc 0.7.5" />
|
|
<title>miplearn.components.tests.test_lazy_dynamic API documentation</title>
|
|
<meta name="description" content="" />
|
|
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
|
|
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
|
|
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
|
|
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
|
|
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
|
|
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
|
|
</head>
|
|
<body>
|
|
<main>
|
|
<article id="content">
|
|
<header>
|
|
<h1 class="title">Module <code>miplearn.components.tests.test_lazy_dynamic</code></h1>
|
|
</header>
|
|
<section id="section-intro">
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python"># MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from unittest.mock import Mock
|
|
|
|
import numpy as np
|
|
from numpy.linalg import norm
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
|
from miplearn.solvers.internal import InternalSolver
|
|
from miplearn.solvers.learning import LearningSolver
|
|
from miplearn.tests import get_test_pyomo_instances
|
|
|
|
E = 0.1
|
|
|
|
|
|
def test_lazy_fit():
|
|
instances, models = get_test_pyomo_instances()
|
|
instances[0].found_violated_lazy_constraints = ["a", "b"]
|
|
instances[1].found_violated_lazy_constraints = ["b", "c"]
|
|
classifier = Mock(spec=Classifier)
|
|
component = DynamicLazyConstraintsComponent(classifier=classifier)
|
|
|
|
component.fit(instances)
|
|
|
|
# Should create one classifier for each violation
|
|
assert "a" in component.classifiers
|
|
assert "b" in component.classifiers
|
|
assert "c" in component.classifiers
|
|
|
|
# Should provide correct x_train to each classifier
|
|
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
|
|
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
|
|
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
|
|
assert norm(expected_x_train_a - actual_x_train_a) < E
|
|
assert norm(expected_x_train_b - actual_x_train_b) < E
|
|
assert norm(expected_x_train_c - actual_x_train_c) < E
|
|
|
|
# Should provide correct y_train to each classifier
|
|
expected_y_train_a = np.array([1.0, 0.0])
|
|
expected_y_train_b = np.array([1.0, 1.0])
|
|
expected_y_train_c = np.array([0.0, 1.0])
|
|
actual_y_train_a = component.classifiers["a"].fit.call_args[0][1]
|
|
actual_y_train_b = component.classifiers["b"].fit.call_args[0][1]
|
|
actual_y_train_c = component.classifiers["c"].fit.call_args[0][1]
|
|
assert norm(expected_y_train_a - actual_y_train_a) < E
|
|
assert norm(expected_y_train_b - actual_y_train_b) < E
|
|
assert norm(expected_y_train_c - actual_y_train_c) < E
|
|
|
|
|
|
def test_lazy_before():
|
|
instances, models = get_test_pyomo_instances()
|
|
instances[0].build_lazy_constraint = Mock(return_value="c1")
|
|
solver = LearningSolver()
|
|
solver.internal_solver = Mock(spec=InternalSolver)
|
|
component = DynamicLazyConstraintsComponent(threshold=0.10)
|
|
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
|
|
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
|
|
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
|
|
|
|
component.before_solve(solver, instances[0], models[0])
|
|
|
|
# Should ask classifier likelihood of each constraint being violated
|
|
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
|
|
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
|
|
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
|
|
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
|
|
assert norm(expected_x_test_a - actual_x_test_a) < E
|
|
assert norm(expected_x_test_b - actual_x_test_b) < E
|
|
|
|
# Should ask instance to generate cut for constraints whose likelihood
|
|
# of being violated exceeds the threshold
|
|
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
|
|
|
|
# Should ask internal solver to add generated constraint
|
|
solver.internal_solver.add_constraint.assert_called_once_with("c1")
|
|
|
|
|
|
def test_lazy_evaluate():
|
|
instances, models = get_test_pyomo_instances()
|
|
component = DynamicLazyConstraintsComponent()
|
|
component.classifiers = {
|
|
"a": Mock(spec=Classifier),
|
|
"b": Mock(spec=Classifier),
|
|
"c": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
|
|
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
|
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
|
|
|
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
|
|
instances[1].found_violated_lazy_constraints = ["b", "d"]
|
|
assert component.evaluate(instances) == {
|
|
0: {
|
|
"Accuracy": 0.75,
|
|
"F1 score": 0.8,
|
|
"Precision": 1.0,
|
|
"Recall": 2 / 3.0,
|
|
"Predicted positive": 2,
|
|
"Predicted negative": 2,
|
|
"Condition positive": 3,
|
|
"Condition negative": 1,
|
|
"False negative": 1,
|
|
"False positive": 0,
|
|
"True negative": 1,
|
|
"True positive": 2,
|
|
"Predicted positive (%)": 50.0,
|
|
"Predicted negative (%)": 50.0,
|
|
"Condition positive (%)": 75.0,
|
|
"Condition negative (%)": 25.0,
|
|
"False negative (%)": 25.0,
|
|
"False positive (%)": 0,
|
|
"True negative (%)": 25.0,
|
|
"True positive (%)": 50.0,
|
|
},
|
|
1: {
|
|
"Accuracy": 0.5,
|
|
"F1 score": 0.5,
|
|
"Precision": 0.5,
|
|
"Recall": 0.5,
|
|
"Predicted positive": 2,
|
|
"Predicted negative": 2,
|
|
"Condition positive": 2,
|
|
"Condition negative": 2,
|
|
"False negative": 1,
|
|
"False positive": 1,
|
|
"True negative": 1,
|
|
"True positive": 1,
|
|
"Predicted positive (%)": 50.0,
|
|
"Predicted negative (%)": 50.0,
|
|
"Condition positive (%)": 50.0,
|
|
"Condition negative (%)": 50.0,
|
|
"False negative (%)": 25.0,
|
|
"False positive (%)": 25.0,
|
|
"True negative (%)": 25.0,
|
|
"True positive (%)": 25.0,
|
|
},
|
|
}</code></pre>
|
|
</details>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
<section>
|
|
<h2 class="section-title" id="header-functions">Functions</h2>
|
|
<dl>
|
|
<dt id="miplearn.components.tests.test_lazy_dynamic.test_lazy_before"><code class="name flex">
|
|
<span>def <span class="ident">test_lazy_before</span></span>(<span>)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def test_lazy_before():
|
|
instances, models = get_test_pyomo_instances()
|
|
instances[0].build_lazy_constraint = Mock(return_value="c1")
|
|
solver = LearningSolver()
|
|
solver.internal_solver = Mock(spec=InternalSolver)
|
|
component = DynamicLazyConstraintsComponent(threshold=0.10)
|
|
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
|
|
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
|
|
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
|
|
|
|
component.before_solve(solver, instances[0], models[0])
|
|
|
|
# Should ask classifier likelihood of each constraint being violated
|
|
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
|
|
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
|
|
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
|
|
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
|
|
assert norm(expected_x_test_a - actual_x_test_a) < E
|
|
assert norm(expected_x_test_b - actual_x_test_b) < E
|
|
|
|
# Should ask instance to generate cut for constraints whose likelihood
|
|
# of being violated exceeds the threshold
|
|
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
|
|
|
|
# Should ask internal solver to add generated constraint
|
|
solver.internal_solver.add_constraint.assert_called_once_with("c1")</code></pre>
|
|
</details>
|
|
</dd>
|
|
<dt id="miplearn.components.tests.test_lazy_dynamic.test_lazy_evaluate"><code class="name flex">
|
|
<span>def <span class="ident">test_lazy_evaluate</span></span>(<span>)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def test_lazy_evaluate():
|
|
instances, models = get_test_pyomo_instances()
|
|
component = DynamicLazyConstraintsComponent()
|
|
component.classifiers = {
|
|
"a": Mock(spec=Classifier),
|
|
"b": Mock(spec=Classifier),
|
|
"c": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
|
|
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
|
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
|
|
|
|
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
|
|
instances[1].found_violated_lazy_constraints = ["b", "d"]
|
|
assert component.evaluate(instances) == {
|
|
0: {
|
|
"Accuracy": 0.75,
|
|
"F1 score": 0.8,
|
|
"Precision": 1.0,
|
|
"Recall": 2 / 3.0,
|
|
"Predicted positive": 2,
|
|
"Predicted negative": 2,
|
|
"Condition positive": 3,
|
|
"Condition negative": 1,
|
|
"False negative": 1,
|
|
"False positive": 0,
|
|
"True negative": 1,
|
|
"True positive": 2,
|
|
"Predicted positive (%)": 50.0,
|
|
"Predicted negative (%)": 50.0,
|
|
"Condition positive (%)": 75.0,
|
|
"Condition negative (%)": 25.0,
|
|
"False negative (%)": 25.0,
|
|
"False positive (%)": 0,
|
|
"True negative (%)": 25.0,
|
|
"True positive (%)": 50.0,
|
|
},
|
|
1: {
|
|
"Accuracy": 0.5,
|
|
"F1 score": 0.5,
|
|
"Precision": 0.5,
|
|
"Recall": 0.5,
|
|
"Predicted positive": 2,
|
|
"Predicted negative": 2,
|
|
"Condition positive": 2,
|
|
"Condition negative": 2,
|
|
"False negative": 1,
|
|
"False positive": 1,
|
|
"True negative": 1,
|
|
"True positive": 1,
|
|
"Predicted positive (%)": 50.0,
|
|
"Predicted negative (%)": 50.0,
|
|
"Condition positive (%)": 50.0,
|
|
"Condition negative (%)": 50.0,
|
|
"False negative (%)": 25.0,
|
|
"False positive (%)": 25.0,
|
|
"True negative (%)": 25.0,
|
|
"True positive (%)": 25.0,
|
|
},
|
|
}</code></pre>
|
|
</details>
|
|
</dd>
|
|
<dt id="miplearn.components.tests.test_lazy_dynamic.test_lazy_fit"><code class="name flex">
|
|
<span>def <span class="ident">test_lazy_fit</span></span>(<span>)</span>
|
|
</code></dt>
|
|
<dd>
|
|
<section class="desc"></section>
|
|
<details class="source">
|
|
<summary>
|
|
<span>Expand source code</span>
|
|
</summary>
|
|
<pre><code class="python">def test_lazy_fit():
|
|
instances, models = get_test_pyomo_instances()
|
|
instances[0].found_violated_lazy_constraints = ["a", "b"]
|
|
instances[1].found_violated_lazy_constraints = ["b", "c"]
|
|
classifier = Mock(spec=Classifier)
|
|
component = DynamicLazyConstraintsComponent(classifier=classifier)
|
|
|
|
component.fit(instances)
|
|
|
|
# Should create one classifier for each violation
|
|
assert "a" in component.classifiers
|
|
assert "b" in component.classifiers
|
|
assert "c" in component.classifiers
|
|
|
|
# Should provide correct x_train to each classifier
|
|
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
|
|
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
|
|
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
|
|
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
|
|
assert norm(expected_x_train_a - actual_x_train_a) < E
|
|
assert norm(expected_x_train_b - actual_x_train_b) < E
|
|
assert norm(expected_x_train_c - actual_x_train_c) < E
|
|
|
|
# Should provide correct y_train to each classifier
|
|
expected_y_train_a = np.array([1.0, 0.0])
|
|
expected_y_train_b = np.array([1.0, 1.0])
|
|
expected_y_train_c = np.array([0.0, 1.0])
|
|
actual_y_train_a = component.classifiers["a"].fit.call_args[0][1]
|
|
actual_y_train_b = component.classifiers["b"].fit.call_args[0][1]
|
|
actual_y_train_c = component.classifiers["c"].fit.call_args[0][1]
|
|
assert norm(expected_y_train_a - actual_y_train_a) < E
|
|
assert norm(expected_y_train_b - actual_y_train_b) < E
|
|
assert norm(expected_y_train_c - actual_y_train_c) < E</code></pre>
|
|
</details>
|
|
</dd>
|
|
</dl>
|
|
</section>
|
|
<section>
|
|
</section>
|
|
</article>
|
|
<nav id="sidebar">
|
|
<h1>Index</h1>
|
|
<div class="toc">
|
|
<ul></ul>
|
|
</div>
|
|
<ul id="index">
|
|
<li><h3>Super-module</h3>
|
|
<ul>
|
|
<li><code><a title="miplearn.components.tests" href="index.html">miplearn.components.tests</a></code></li>
|
|
</ul>
|
|
</li>
|
|
<li><h3><a href="#header-functions">Functions</a></h3>
|
|
<ul class="">
|
|
<li><code><a title="miplearn.components.tests.test_lazy_dynamic.test_lazy_before" href="#miplearn.components.tests.test_lazy_dynamic.test_lazy_before">test_lazy_before</a></code></li>
|
|
<li><code><a title="miplearn.components.tests.test_lazy_dynamic.test_lazy_evaluate" href="#miplearn.components.tests.test_lazy_dynamic.test_lazy_evaluate">test_lazy_evaluate</a></code></li>
|
|
<li><code><a title="miplearn.components.tests.test_lazy_dynamic.test_lazy_fit" href="#miplearn.components.tests.test_lazy_dynamic.test_lazy_fit">test_lazy_fit</a></code></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</nav>
|
|
</main>
|
|
<footer id="footer">
|
|
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.5</a>.</p>
|
|
</footer>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
|
|
<script>hljs.initHighlightingOnLoad()</script>
|
|
</body>
|
|
</html> |