You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/0.2/api/miplearn/components/tests/test_primal.html

306 lines
15 KiB

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.7.5" />
<title>miplearn.components.tests.test_primal API documentation</title>
<meta name="description" content="" />
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>miplearn.components.tests.test_primal</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python"># MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock
import numpy as np
from miplearn.classifiers import Classifier
from miplearn.components.primal import PrimalSolutionComponent
from miplearn.tests import get_test_pyomo_instances
def test_predict():
instances, models = get_test_pyomo_instances()
comp = PrimalSolutionComponent()
comp.fit(instances)
solution = comp.predict(instances[0])
assert &#34;x&#34; in solution
assert 0 in solution[&#34;x&#34;]
assert 1 in solution[&#34;x&#34;]
assert 2 in solution[&#34;x&#34;]
assert 3 in solution[&#34;x&#34;]
def test_evaluate():
instances, models = get_test_pyomo_instances()
clf_zero = Mock(spec=Classifier)
clf_zero.predict_proba = Mock(
return_value=np.array(
[
[0.0, 1.0], # x[0]
[0.0, 1.0], # x[1]
[1.0, 0.0], # x[2]
[1.0, 0.0], # x[3]
]
)
)
clf_one = Mock(spec=Classifier)
clf_one.predict_proba = Mock(
return_value=np.array(
[
[1.0, 0.0], # x[0] instances[0]
[1.0, 0.0], # x[1] instances[0]
[0.0, 1.0], # x[2] instances[0]
[1.0, 0.0], # x[3] instances[0]
]
)
)
comp = PrimalSolutionComponent(classifier=[clf_zero, clf_one], threshold=0.50)
comp.fit(instances[:1])
assert comp.predict(instances[0]) == {&#34;x&#34;: {0: 0, 1: 0, 2: 1, 3: None}}
assert instances[0].training_data[0][&#34;Solution&#34;] == {&#34;x&#34;: {0: 1, 1: 0, 2: 1, 3: 1}}
ev = comp.evaluate(instances[:1])
assert ev == {
&#34;Fix one&#34;: {
0: {
&#34;Accuracy&#34;: 0.5,
&#34;Condition negative&#34;: 1,
&#34;Condition negative (%)&#34;: 25.0,
&#34;Condition positive&#34;: 3,
&#34;Condition positive (%)&#34;: 75.0,
&#34;F1 score&#34;: 0.5,
&#34;False negative&#34;: 2,
&#34;False negative (%)&#34;: 50.0,
&#34;False positive&#34;: 0,
&#34;False positive (%)&#34;: 0.0,
&#34;Precision&#34;: 1.0,
&#34;Predicted negative&#34;: 3,
&#34;Predicted negative (%)&#34;: 75.0,
&#34;Predicted positive&#34;: 1,
&#34;Predicted positive (%)&#34;: 25.0,
&#34;Recall&#34;: 0.3333333333333333,
&#34;True negative&#34;: 1,
&#34;True negative (%)&#34;: 25.0,
&#34;True positive&#34;: 1,
&#34;True positive (%)&#34;: 25.0,
}
},
&#34;Fix zero&#34;: {
0: {
&#34;Accuracy&#34;: 0.75,
&#34;Condition negative&#34;: 3,
&#34;Condition negative (%)&#34;: 75.0,
&#34;Condition positive&#34;: 1,
&#34;Condition positive (%)&#34;: 25.0,
&#34;F1 score&#34;: 0.6666666666666666,
&#34;False negative&#34;: 0,
&#34;False negative (%)&#34;: 0.0,
&#34;False positive&#34;: 1,
&#34;False positive (%)&#34;: 25.0,
&#34;Precision&#34;: 0.5,
&#34;Predicted negative&#34;: 2,
&#34;Predicted negative (%)&#34;: 50.0,
&#34;Predicted positive&#34;: 2,
&#34;Predicted positive (%)&#34;: 50.0,
&#34;Recall&#34;: 1.0,
&#34;True negative&#34;: 2,
&#34;True negative (%)&#34;: 50.0,
&#34;True positive&#34;: 1,
&#34;True positive (%)&#34;: 25.0,
}
},
}
def test_primal_parallel_fit():
instances, models = get_test_pyomo_instances()
comp = PrimalSolutionComponent()
comp.fit(instances, n_jobs=2)
assert len(comp.classifiers) == 2</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="miplearn.components.tests.test_primal.test_evaluate"><code class="name flex">
<span>def <span class="ident">test_evaluate</span></span>(<span>)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def test_evaluate():
instances, models = get_test_pyomo_instances()
clf_zero = Mock(spec=Classifier)
clf_zero.predict_proba = Mock(
return_value=np.array(
[
[0.0, 1.0], # x[0]
[0.0, 1.0], # x[1]
[1.0, 0.0], # x[2]
[1.0, 0.0], # x[3]
]
)
)
clf_one = Mock(spec=Classifier)
clf_one.predict_proba = Mock(
return_value=np.array(
[
[1.0, 0.0], # x[0] instances[0]
[1.0, 0.0], # x[1] instances[0]
[0.0, 1.0], # x[2] instances[0]
[1.0, 0.0], # x[3] instances[0]
]
)
)
comp = PrimalSolutionComponent(classifier=[clf_zero, clf_one], threshold=0.50)
comp.fit(instances[:1])
assert comp.predict(instances[0]) == {&#34;x&#34;: {0: 0, 1: 0, 2: 1, 3: None}}
assert instances[0].training_data[0][&#34;Solution&#34;] == {&#34;x&#34;: {0: 1, 1: 0, 2: 1, 3: 1}}
ev = comp.evaluate(instances[:1])
assert ev == {
&#34;Fix one&#34;: {
0: {
&#34;Accuracy&#34;: 0.5,
&#34;Condition negative&#34;: 1,
&#34;Condition negative (%)&#34;: 25.0,
&#34;Condition positive&#34;: 3,
&#34;Condition positive (%)&#34;: 75.0,
&#34;F1 score&#34;: 0.5,
&#34;False negative&#34;: 2,
&#34;False negative (%)&#34;: 50.0,
&#34;False positive&#34;: 0,
&#34;False positive (%)&#34;: 0.0,
&#34;Precision&#34;: 1.0,
&#34;Predicted negative&#34;: 3,
&#34;Predicted negative (%)&#34;: 75.0,
&#34;Predicted positive&#34;: 1,
&#34;Predicted positive (%)&#34;: 25.0,
&#34;Recall&#34;: 0.3333333333333333,
&#34;True negative&#34;: 1,
&#34;True negative (%)&#34;: 25.0,
&#34;True positive&#34;: 1,
&#34;True positive (%)&#34;: 25.0,
}
},
&#34;Fix zero&#34;: {
0: {
&#34;Accuracy&#34;: 0.75,
&#34;Condition negative&#34;: 3,
&#34;Condition negative (%)&#34;: 75.0,
&#34;Condition positive&#34;: 1,
&#34;Condition positive (%)&#34;: 25.0,
&#34;F1 score&#34;: 0.6666666666666666,
&#34;False negative&#34;: 0,
&#34;False negative (%)&#34;: 0.0,
&#34;False positive&#34;: 1,
&#34;False positive (%)&#34;: 25.0,
&#34;Precision&#34;: 0.5,
&#34;Predicted negative&#34;: 2,
&#34;Predicted negative (%)&#34;: 50.0,
&#34;Predicted positive&#34;: 2,
&#34;Predicted positive (%)&#34;: 50.0,
&#34;Recall&#34;: 1.0,
&#34;True negative&#34;: 2,
&#34;True negative (%)&#34;: 50.0,
&#34;True positive&#34;: 1,
&#34;True positive (%)&#34;: 25.0,
}
},
}</code></pre>
</details>
</dd>
<dt id="miplearn.components.tests.test_primal.test_predict"><code class="name flex">
<span>def <span class="ident">test_predict</span></span>(<span>)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def test_predict():
instances, models = get_test_pyomo_instances()
comp = PrimalSolutionComponent()
comp.fit(instances)
solution = comp.predict(instances[0])
assert &#34;x&#34; in solution
assert 0 in solution[&#34;x&#34;]
assert 1 in solution[&#34;x&#34;]
assert 2 in solution[&#34;x&#34;]
assert 3 in solution[&#34;x&#34;]</code></pre>
</details>
</dd>
<dt id="miplearn.components.tests.test_primal.test_primal_parallel_fit"><code class="name flex">
<span>def <span class="ident">test_primal_parallel_fit</span></span>(<span>)</span>
</code></dt>
<dd>
<section class="desc"></section>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def test_primal_parallel_fit():
instances, models = get_test_pyomo_instances()
comp = PrimalSolutionComponent()
comp.fit(instances, n_jobs=2)
assert len(comp.classifiers) == 2</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="miplearn.components.tests" href="index.html">miplearn.components.tests</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="miplearn.components.tests.test_primal.test_evaluate" href="#miplearn.components.tests.test_primal.test_evaluate">test_evaluate</a></code></li>
<li><code><a title="miplearn.components.tests.test_primal.test_predict" href="#miplearn.components.tests.test_primal.test_predict">test_predict</a></code></li>
<li><code><a title="miplearn.components.tests.test_primal.test_primal_parallel_fit" href="#miplearn.components.tests.test_primal.test_primal_parallel_fit">test_primal_parallel_fit</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> 0.7.5</a>.</p>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad()</script>
</body>
</html>