You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
485 lines
26 KiB
485 lines
26 KiB
|
|
<!DOCTYPE html>
|
|
|
|
<html>
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
|
<title>8. Learning Solver — MIPLearn 0.3</title>
|
|
|
|
<link href="../../_static/css/theme.css" rel="stylesheet" />
|
|
<link href="../../_static/css/index.c5995385ac14fb8791e8eb36b4908be2.css" rel="stylesheet" />
|
|
|
|
|
|
<link rel="stylesheet"
|
|
href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
|
|
<link rel="preload" as="font" type="font/woff2" crossorigin
|
|
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
|
|
<link rel="preload" as="font" type="font/woff2" crossorigin
|
|
href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
|
|
<link rel="stylesheet" href="../../_static/sphinx-book-theme.acff12b8f9c144ce68a297486a2fa670.css" type="text/css" />
|
|
<link rel="stylesheet" type="text/css" href="../../_static/nbsphinx-code-cells.css" />
|
|
<link rel="stylesheet" type="text/css" href="../../_static/custom.css" />
|
|
|
|
<link rel="preload" as="script" href="../../_static/js/index.1c5a1a01449ed65a7b51.js">
|
|
|
|
<script id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
|
|
<script src="../../_static/jquery.js"></script>
|
|
<script src="../../_static/underscore.js"></script>
|
|
<script src="../../_static/doctools.js"></script>
|
|
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
|
|
<script src="../../_static/sphinx-book-theme.12a9622fbb08dcb3a2a40b2c02b83a57.js"></script>
|
|
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["\\(", "\\)"]], "displayMath": [["\\[", "\\]"]], "processRefs": false, "processEnvironments": false}})</script>
|
|
<link rel="index" title="Index" href="../../genindex/" />
|
|
<link rel="search" title="Search" href="../../search/" />
|
|
<link rel="next" title="9. Benchmark Problems" href="../../api/problems/" />
|
|
<link rel="prev" title="7. Primal Components" href="../primal/" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
<meta name="docsearch:language" content="en" />
|
|
|
|
</head>
|
|
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
|
|
|
|
<div class="container-fluid" id="banner"></div>
|
|
|
|
|
|
|
|
<div class="container-xl">
|
|
<div class="row">
|
|
|
|
<div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
|
|
|
|
<div class="navbar-brand-box">
|
|
<a class="navbar-brand text-wrap" href="../../">
|
|
|
|
|
|
<h1 class="site-logo" id="site-title">MIPLearn 0.3</h1>
|
|
|
|
</a>
|
|
</div><form class="bd-search d-flex align-items-center" action="../../search/" method="get">
|
|
<i class="icon fas fa-search"></i>
|
|
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
|
|
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
|
|
<div class="bd-toc-item active">
|
|
<p class="caption">
|
|
<span class="caption-text">
|
|
Tutorials
|
|
</span>
|
|
</p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../tutorials/getting-started-pyomo/">
|
|
1. Getting started (Pyomo)
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../tutorials/getting-started-gurobipy/">
|
|
2. Getting started (Gurobipy)
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../tutorials/getting-started-jump/">
|
|
3. Getting started (JuMP)
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
<p class="caption">
|
|
<span class="caption-text">
|
|
User Guide
|
|
</span>
|
|
</p>
|
|
<ul class="current nav bd-sidenav">
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../problems/">
|
|
4. Benchmark Problems
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../collectors/">
|
|
5. Training Data Collectors
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../features/">
|
|
6. Feature Extractors
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../primal/">
|
|
7. Primal Components
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1 current active">
|
|
<a class="current reference internal" href="#">
|
|
8. Learning Solver
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
<p class="caption">
|
|
<span class="caption-text">
|
|
Python API Reference
|
|
</span>
|
|
</p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../api/problems/">
|
|
9. Benchmark Problems
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../api/collectors/">
|
|
10. Collectors & Extractors
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../api/components/">
|
|
11. Components
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../api/solvers/">
|
|
12. Solvers
|
|
</a>
|
|
</li>
|
|
<li class="toctree-l1">
|
|
<a class="reference internal" href="../../api/helpers/">
|
|
13. Helpers
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
|
|
</div>
|
|
</nav> <!-- To handle the deprecated key -->
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
|
|
|
|
<div class="topbar container-xl fixed-top">
|
|
<div class="topbar-contents row">
|
|
<div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
|
|
<div class="col pl-md-4 topbar-main">
|
|
|
|
<button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
|
|
data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
|
|
aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
|
|
title="Toggle navigation" data-toggle="tooltip" data-placement="left">
|
|
<i class="fas fa-bars"></i>
|
|
<i class="fas fa-arrow-left"></i>
|
|
<i class="fas fa-arrow-up"></i>
|
|
</button>
|
|
|
|
|
|
<div class="dropdown-buttons-trigger">
|
|
<button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
|
|
class="fas fa-download"></i></button>
|
|
|
|
<div class="dropdown-buttons">
|
|
<!-- ipynb file if we had a myst markdown file -->
|
|
|
|
<!-- Download raw file -->
|
|
<a class="dropdown-buttons" href="../../_sources/guide/solvers.ipynb.txt"><button type="button"
|
|
class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
|
|
data-placement="left">.ipynb</button></a>
|
|
<!-- Download PDF via print -->
|
|
<button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
|
|
onClick="window.print()" data-toggle="tooltip" data-placement="left">.pdf</button>
|
|
</div>
|
|
</div>
|
|
|
|
<!-- Source interaction buttons -->
|
|
|
|
<!-- Full screen (wrap in <a> to have style consistency -->
|
|
|
|
<a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
|
|
data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
|
|
title="Fullscreen mode"><i
|
|
class="fas fa-expand"></i></button></a>
|
|
|
|
<!-- Launch buttons -->
|
|
|
|
</div>
|
|
|
|
<!-- Table of contents -->
|
|
<div class="d-none d-md-block col-md-2 bd-toc show">
|
|
|
|
<div class="tocsection onthispage pt-5 pb-3">
|
|
<i class="fas fa-list"></i> Contents
|
|
</div>
|
|
<nav id="bd-toc-nav">
|
|
<ul class="visible nav section-nav flex-column">
|
|
<li class="toc-h2 nav-item toc-entry">
|
|
<a class="reference internal nav-link" href="#Configuring-the-solver">
|
|
8.1. Configuring the solver
|
|
</a>
|
|
</li>
|
|
<li class="toc-h2 nav-item toc-entry">
|
|
<a class="reference internal nav-link" href="#Training-and-solving-new-instances">
|
|
8.2. Training and solving new instances
|
|
</a>
|
|
</li>
|
|
<li class="toc-h2 nav-item toc-entry">
|
|
<a class="reference internal nav-link" href="#Complete-example">
|
|
8.3. Complete example
|
|
</a>
|
|
</li>
|
|
</ul>
|
|
|
|
</nav>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="main-content" class="row">
|
|
<div class="col-12 col-md-9 pl-md-3 pr-md-0">
|
|
|
|
<div>
|
|
|
|
<div class="section" id="Learning-Solver">
|
|
<h1><span class="section-number">8. </span>Learning Solver<a class="headerlink" href="#Learning-Solver" title="Permalink to this headline">¶</a></h1>
|
|
<p>On previous pages, we discussed various components of the MIPLearn framework, including training data collectors, feature extractors, and individual machine learning components. In this page, we introduce <strong>LearningSolver</strong>, the main class of the framework which integrates all the aforementioned components into a cohesive whole. Using <strong>LearningSolver</strong> involves three steps: (i) configuring the solver; (ii) training the ML components; and (iii) solving new MIP instances. In the following, we
|
|
describe each of these steps, then conclude with a complete runnable example.</p>
|
|
<div class="section" id="Configuring-the-solver">
|
|
<h2><span class="section-number">8.1. </span>Configuring the solver<a class="headerlink" href="#Configuring-the-solver" title="Permalink to this headline">¶</a></h2>
|
|
<p><strong>LearningSolver</strong> is composed by multiple individual machine learning components, each targeting a different part of the solution process, or implementing a different machine learning strategy. This architecture allows strategies to be easily enabled, disabled or customized, making the framework flexible. By default, no components are provided and <strong>LearningSolver</strong> is equivalent to a traditional MIP solver. To specify additional components, the <code class="docutils literal notranslate"><span class="pre">components</span></code> constructor argument may be used:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">solver</span> <span class="o">=</span> <span class="n">LearningSolver</span><span class="p">(</span>
|
|
<span class="n">components</span><span class="o">=</span><span class="p">[</span>
|
|
<span class="n">comp1</span><span class="p">,</span>
|
|
<span class="n">comp2</span><span class="p">,</span>
|
|
<span class="n">comp3</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
<span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>In this example, three components <code class="docutils literal notranslate"><span class="pre">comp1</span></code>, <code class="docutils literal notranslate"><span class="pre">comp2</span></code> and <code class="docutils literal notranslate"><span class="pre">comp3</span></code> are provided. The strategies implemented by these components are applied sequentially when solving the problem. For example, <code class="docutils literal notranslate"><span class="pre">comp1</span></code> and <code class="docutils literal notranslate"><span class="pre">comp2</span></code> could fix a subset of decision variables, while <code class="docutils literal notranslate"><span class="pre">comp3</span></code> constructs a warm start for the remaining problem.</p>
|
|
</div>
|
|
<div class="section" id="Training-and-solving-new-instances">
|
|
<h2><span class="section-number">8.2. </span>Training and solving new instances<a class="headerlink" href="#Training-and-solving-new-instances" title="Permalink to this headline">¶</a></h2>
|
|
<p>Once a solver is configured, its ML components need to be trained. This can be achieved by the <code class="docutils literal notranslate"><span class="pre">solver.fit</span></code> method, as illustrated below. The method accepts a list of HDF5 files and trains each individual component sequentially. Once the solver is trained, new instances can be solved using <code class="docutils literal notranslate"><span class="pre">solver.optimize</span></code>. The method returns a dictionary of statistics collected by each component, such as the number of variables fixed.</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="c1"># Build instances</span>
|
|
<span class="n">train_data</span> <span class="o">=</span> <span class="o">...</span>
|
|
<span class="n">test_data</span> <span class="o">=</span> <span class="o">...</span>
|
|
|
|
<span class="c1"># Collect training data</span>
|
|
<span class="n">bc</span> <span class="o">=</span> <span class="n">BasicCollector</span><span class="p">()</span>
|
|
<span class="n">bc</span><span class="o">.</span><span class="n">collect</span><span class="p">(</span><span class="n">train_data</span><span class="p">,</span> <span class="n">build_model</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Build solver</span>
|
|
<span class="n">solver</span> <span class="o">=</span> <span class="n">LearningSolver</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Train components</span>
|
|
<span class="n">solver</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_data</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Solve a new test instance</span>
|
|
<span class="n">stats</span> <span class="o">=</span> <span class="n">solver</span><span class="o">.</span><span class="n">optimize</span><span class="p">(</span><span class="n">test_data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">build_model</span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="Complete-example">
|
|
<h2><span class="section-number">8.3. </span>Complete example<a class="headerlink" href="#Complete-example" title="Permalink to this headline">¶</a></h2>
|
|
<p>In the example below, we illustrate the usage of <strong>LearningSolver</strong> by building instances of the Traveling Salesman Problem, collecting training data, training the ML components, then solving a new instance.</p>
|
|
<div class="nbinput docutils container">
|
|
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[3]:
|
|
</pre></div>
|
|
</div>
|
|
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">random</span>
|
|
|
|
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
|
|
<span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">uniform</span><span class="p">,</span> <span class="n">randint</span>
|
|
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
|
|
|
|
<span class="kn">from</span> <span class="nn">miplearn.classifiers.minprob</span> <span class="kn">import</span> <span class="n">MinProbabilityClassifier</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.classifiers.singleclass</span> <span class="kn">import</span> <span class="n">SingleClassFix</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.collectors.basic</span> <span class="kn">import</span> <span class="n">BasicCollector</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.components.primal.actions</span> <span class="kn">import</span> <span class="n">SetWarmStart</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.components.primal.indep</span> <span class="kn">import</span> <span class="n">IndependentVarsPrimalComponent</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.extractors.AlvLouWeh2017</span> <span class="kn">import</span> <span class="n">AlvLouWeh2017Extractor</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.io</span> <span class="kn">import</span> <span class="n">write_pkl_gz</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.problems.tsp</span> <span class="kn">import</span> <span class="p">(</span>
|
|
<span class="n">TravelingSalesmanGenerator</span><span class="p">,</span>
|
|
<span class="n">build_tsp_model</span><span class="p">,</span>
|
|
<span class="p">)</span>
|
|
<span class="kn">from</span> <span class="nn">miplearn.solvers.learning</span> <span class="kn">import</span> <span class="n">LearningSolver</span>
|
|
|
|
<span class="c1"># Set random seed to make example reproducible.</span>
|
|
<span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">42</span><span class="p">)</span>
|
|
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">42</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Generate a few instances of the traveling salesman problem.</span>
|
|
<span class="n">data</span> <span class="o">=</span> <span class="n">TravelingSalesmanGenerator</span><span class="p">(</span>
|
|
<span class="n">n</span><span class="o">=</span><span class="n">randint</span><span class="p">(</span><span class="n">low</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">high</span><span class="o">=</span><span class="mi">11</span><span class="p">),</span>
|
|
<span class="n">x</span><span class="o">=</span><span class="n">uniform</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">1000.0</span><span class="p">),</span>
|
|
<span class="n">y</span><span class="o">=</span><span class="n">uniform</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">1000.0</span><span class="p">),</span>
|
|
<span class="n">gamma</span><span class="o">=</span><span class="n">uniform</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mf">0.90</span><span class="p">,</span> <span class="n">scale</span><span class="o">=</span><span class="mf">0.20</span><span class="p">),</span>
|
|
<span class="n">fix_cities</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
|
<span class="nb">round</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
|
|
<span class="p">)</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="mi">50</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Save instance data to data/tsp/00000.pkl.gz, data/tsp/00001.pkl.gz, ...</span>
|
|
<span class="n">all_data</span> <span class="o">=</span> <span class="n">write_pkl_gz</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="s2">"data/tsp"</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Split train/test data</span>
|
|
<span class="n">train_data</span> <span class="o">=</span> <span class="n">all_data</span><span class="p">[:</span><span class="mi">40</span><span class="p">]</span>
|
|
<span class="n">test_data</span> <span class="o">=</span> <span class="n">all_data</span><span class="p">[</span><span class="mi">40</span><span class="p">:]</span>
|
|
|
|
<span class="c1"># Collect training data</span>
|
|
<span class="n">bc</span> <span class="o">=</span> <span class="n">BasicCollector</span><span class="p">()</span>
|
|
<span class="n">bc</span><span class="o">.</span><span class="n">collect</span><span class="p">(</span><span class="n">train_data</span><span class="p">,</span> <span class="n">build_tsp_model</span><span class="p">,</span> <span class="n">n_jobs</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Build learning solver</span>
|
|
<span class="n">solver</span> <span class="o">=</span> <span class="n">LearningSolver</span><span class="p">(</span>
|
|
<span class="n">components</span><span class="o">=</span><span class="p">[</span>
|
|
<span class="n">IndependentVarsPrimalComponent</span><span class="p">(</span>
|
|
<span class="n">base_clf</span><span class="o">=</span><span class="n">SingleClassFix</span><span class="p">(</span>
|
|
<span class="n">MinProbabilityClassifier</span><span class="p">(</span>
|
|
<span class="n">base_clf</span><span class="o">=</span><span class="n">LogisticRegression</span><span class="p">(),</span>
|
|
<span class="n">thresholds</span><span class="o">=</span><span class="p">[</span><span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">],</span>
|
|
<span class="p">),</span>
|
|
<span class="p">),</span>
|
|
<span class="n">extractor</span><span class="o">=</span><span class="n">AlvLouWeh2017Extractor</span><span class="p">(),</span>
|
|
<span class="n">action</span><span class="o">=</span><span class="n">SetWarmStart</span><span class="p">(),</span>
|
|
<span class="p">)</span>
|
|
<span class="p">]</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="c1"># Train ML models</span>
|
|
<span class="n">solver</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_data</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Solve a test instance</span>
|
|
<span class="n">solver</span><span class="o">.</span><span class="n">optimize</span><span class="p">(</span><span class="n">test_data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">build_tsp_model</span><span class="p">)</span>
|
|
<br/></pre></div>
|
|
</div>
|
|
</div>
|
|
<div class="nboutput docutils container">
|
|
<div class="prompt empty docutils container">
|
|
</div>
|
|
<div class="output_area docutils container">
|
|
<div class="highlight"><pre>
|
|
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)
|
|
|
|
CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]
|
|
Thread count: 16 physical cores, 32 logical processors, using up to 32 threads
|
|
|
|
Optimize a model with 10 rows, 45 columns and 90 nonzeros
|
|
Model fingerprint: 0x6ddcd141
|
|
Coefficient statistics:
|
|
Matrix range [1e+00, 1e+00]
|
|
Objective range [4e+01, 1e+03]
|
|
Bounds range [1e+00, 1e+00]
|
|
RHS range [2e+00, 2e+00]
|
|
Presolve time: 0.00s
|
|
Presolved: 10 rows, 45 columns, 90 nonzeros
|
|
|
|
Iteration Objective Primal Inf. Dual Inf. Time
|
|
0 6.3600000e+02 1.700000e+01 0.000000e+00 0s
|
|
15 2.7610000e+03 0.000000e+00 0.000000e+00 0s
|
|
|
|
Solved in 15 iterations and 0.00 seconds (0.00 work units)
|
|
Optimal objective 2.761000000e+03
|
|
Set parameter LazyConstraints to value 1
|
|
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (linux64)
|
|
|
|
CPU model: AMD Ryzen 9 7950X 16-Core Processor, instruction set [SSE2|AVX|AVX2|AVX512]
|
|
Thread count: 16 physical cores, 32 logical processors, using up to 32 threads
|
|
|
|
Optimize a model with 10 rows, 45 columns and 90 nonzeros
|
|
Model fingerprint: 0x74ca3d0a
|
|
Variable types: 0 continuous, 45 integer (45 binary)
|
|
Coefficient statistics:
|
|
Matrix range [1e+00, 1e+00]
|
|
Objective range [4e+01, 1e+03]
|
|
Bounds range [1e+00, 1e+00]
|
|
RHS range [2e+00, 2e+00]
|
|
|
|
User MIP start produced solution with objective 2796 (0.00s)
|
|
Loaded user MIP start with objective 2796
|
|
|
|
Presolve time: 0.00s
|
|
Presolved: 10 rows, 45 columns, 90 nonzeros
|
|
Variable types: 0 continuous, 45 integer (45 binary)
|
|
|
|
Root relaxation: objective 2.761000e+03, 14 iterations, 0.00 seconds (0.00 work units)
|
|
|
|
Nodes | Current Node | Objective Bounds | Work
|
|
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
|
|
|
|
0 0 2761.00000 0 - 2796.00000 2761.00000 1.25% - 0s
|
|
0 0 cutoff 0 2796.00000 2796.00000 0.00% - 0s
|
|
|
|
Cutting planes:
|
|
Lazy constraints: 3
|
|
|
|
Explored 1 nodes (16 simplex iterations) in 0.01 seconds (0.00 work units)
|
|
Thread count was 32 (of 32 available processors)
|
|
|
|
Solution count 1: 2796
|
|
|
|
Optimal solution found (tolerance 1.00e-04)
|
|
Best objective 2.796000000000e+03, best bound 2.796000000000e+03, gap 0.0000%
|
|
|
|
User-callback calls 110, time in user-callback 0.00 sec
|
|
</pre></div></div>
|
|
</div>
|
|
<div class="nboutput nblast docutils container">
|
|
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[3]:
|
|
</pre></div>
|
|
</div>
|
|
<div class="output_area docutils container">
|
|
<div class="highlight"><pre>
|
|
{'WS: Count': 1, 'WS: Number of variables set': 41.0}
|
|
</pre></div></div>
|
|
</div>
|
|
<div class="nbinput nblast docutils container">
|
|
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[ ]:
|
|
</pre></div>
|
|
</div>
|
|
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>
|
|
</pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div class='prev-next-bottom'>
|
|
|
|
<a class='left-prev' id="prev-link" href="../primal/" title="previous page"><span class="section-number">7. </span>Primal Components</a>
|
|
<a class='right-next' id="next-link" href="../../api/problems/" title="next page"><span class="section-number">9. </span>Benchmark Problems</a>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
</div>
|
|
<footer class="footer mt-5 mt-md-0">
|
|
<div class="container">
|
|
<p>
|
|
|
|
© Copyright 2020-2023, UChicago Argonne, LLC.<br/>
|
|
</p>
|
|
</div>
|
|
</footer>
|
|
</main>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
|
|
<script src="../../_static/js/index.1c5a1a01449ed65a7b51.js"></script>
|
|
|
|
|
|
</body>
|
|
</html> |