Files
MIPLearn/tests/problems/test_uc.py
2025-12-08 10:31:58 -06:00

65 lines
2.3 KiB
Python

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.uc import (
UnitCommitmentData,
build_uc_model_gurobipy,
UnitCommitmentGenerator,
)
def test_generator() -> None:
np.random.seed(42)
gen = UnitCommitmentGenerator(
n_units=randint(low=3, high=4),
n_periods=randint(low=4, high=5),
max_power=uniform(loc=50, scale=450),
min_power=uniform(loc=0.25, scale=0.5),
cost_startup=uniform(loc=1, scale=1),
cost_prod=uniform(loc=1, scale=1),
cost_prod_quad=uniform(loc=1, scale=1),
cost_fixed=uniform(loc=1, scale=1),
min_uptime=randint(low=1, high=8),
min_downtime=randint(low=1, high=8),
cost_jitter=uniform(loc=0.75, scale=0.5),
demand_jitter=uniform(loc=0.9, scale=0.2),
fix_units=True,
)
data = gen.generate(1)
assert data[0].demand.tolist() == [430.3, 511.29, 484.91, 860.61]
assert data[0].min_power.tolist() == [120.05, 156.73, 124.44]
assert data[0].max_power.tolist() == [218.54, 477.82, 379.4]
assert data[0].min_uptime.tolist() == [3, 3, 5]
assert data[0].min_downtime.tolist() == [4, 3, 6]
assert data[0].cost_startup.tolist() == [1.06, 1.72, 1.94]
assert data[0].cost_prod.tolist() == [1.0, 1.99, 1.62]
assert data[0].cost_prod_quad.tolist() == [1.6117, 1.0071, 1.0231]
assert data[0].cost_fixed.tolist() == [1.52, 1.4, 1.05]
def test_uc() -> None:
data = UnitCommitmentData(
demand=np.array([10, 12, 15, 10, 8, 5]),
min_power=np.array([5, 5, 10]),
max_power=np.array([10, 8, 20]),
min_uptime=np.array([4, 3, 2]),
min_downtime=np.array([4, 3, 2]),
cost_startup=np.array([100, 120, 200]),
cost_prod=np.array([1.0, 1.25, 1.5]),
cost_fixed=np.array([10, 12, 9]),
cost_prod_quad=np.array([0, 0, 0]),
)
model = build_uc_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == 154.5
if __name__ == "__main__":
data = UnitCommitmentGenerator().generate(1)[0]
model = build_uc_model_gurobipy(data)
model.optimize()