You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/tests/test_solver.py

43 lines
1.6 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.problems.knapsack import KnapsackInstance2
import numpy as np
def test_solver():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
solver = LearningSolver()
solver.solve(instance)
solver.fit()
solver.solve(instance)
def test_solve_save_load():
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
solver = LearningSolver()
solver.solve(instance)
solver.fit()
solver.save("/tmp/knapsack_train.bin")
prev_x_train_len = len(solver.x_train)
prev_y_train_len = len(solver.y_train)
solver = LearningSolver()
solver.load("/tmp/knapsack_train.bin")
assert len(solver.x_train) == prev_x_train_len
assert len(solver.y_train) == prev_y_train_len
def test_parallel_solve():
instances = [KnapsackInstance2(weights=np.random.rand(5),
prices=np.random.rand(5),
capacity=3.0)
for _ in range(10)]
solver = LearningSolver()
solver.parallel_solve(instances, n_jobs=3)
assert len(solver.x_train[0]) == 10
assert len(solver.y_train[0]) == 10