You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
5.3 KiB
154 lines
5.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
|
|
from tqdm import tqdm
|
|
|
|
from miplearn import Component
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.extractors import InstanceIterator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ConvertTightIneqsIntoEqsStep(Component):
|
|
"""
|
|
Component that predicts which inequality constraints are likely to be binding in
|
|
the LP relaxation of the problem and converts them into equality constraints.
|
|
Optionally double checks that the conversion process did not affect feasibility
|
|
or optimality of the problem.
|
|
|
|
This component does not work on MIPs. All integrality constraints must be relaxed
|
|
before this component is used.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier=CountingClassifier(),
|
|
threshold=0.95,
|
|
slack_tolerance=1e-5,
|
|
):
|
|
self.classifiers = {}
|
|
self.classifier_prototype = classifier
|
|
self.threshold = threshold
|
|
self.slack_tolerance = slack_tolerance
|
|
|
|
def before_solve(self, solver, instance, _):
|
|
logger.info("Predicting tight LP constraints...")
|
|
cids = solver.internal_solver.get_constraint_ids()
|
|
x, constraints = self.x(
|
|
[instance],
|
|
constraint_ids=cids,
|
|
return_constraints=True,
|
|
)
|
|
y = self.predict(x)
|
|
n_converted = 0
|
|
for category in y.keys():
|
|
for i in range(len(y[category])):
|
|
if y[category][i][0] == 1:
|
|
cid = constraints[category][i]
|
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
n_converted += 1
|
|
logger.info(f"Converted {n_converted} inequalities into equalities")
|
|
|
|
def after_solve(self, solver, instance, model, results):
|
|
instance.slacks = solver.internal_solver.get_constraint_slacks()
|
|
|
|
def fit(self, training_instances):
|
|
logger.debug("Extracting x and y...")
|
|
x = self.x(training_instances)
|
|
y = self.y(training_instances)
|
|
logger.debug("Fitting...")
|
|
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
|
|
if category not in self.classifiers:
|
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
self.classifiers[category].fit(x[category], y[category])
|
|
|
|
def x(
|
|
self,
|
|
instances,
|
|
constraint_ids=None,
|
|
return_constraints=False,
|
|
):
|
|
x = {}
|
|
constraints = {}
|
|
for instance in tqdm(
|
|
InstanceIterator(instances),
|
|
desc="Extract (rlx:conv_ineqs:x)",
|
|
disable=len(instances) < 5,
|
|
):
|
|
if constraint_ids is not None:
|
|
cids = constraint_ids
|
|
else:
|
|
cids = instance.slacks.keys()
|
|
for cid in cids:
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
constraints[category] = []
|
|
x[category] += [instance.get_constraint_features(cid)]
|
|
constraints[category] += [cid]
|
|
if return_constraints:
|
|
return x, constraints
|
|
else:
|
|
return x
|
|
|
|
def y(self, instances):
|
|
y = {}
|
|
for instance in tqdm(
|
|
InstanceIterator(instances),
|
|
desc="Extract (rlx:conv_ineqs:y)",
|
|
disable=len(instances) < 5,
|
|
):
|
|
for (cid, slack) in instance.slacks.items():
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in y:
|
|
y[category] = []
|
|
if slack <= self.slack_tolerance:
|
|
y[category] += [[1]]
|
|
else:
|
|
y[category] += [[0]]
|
|
return y
|
|
|
|
def predict(self, x):
|
|
y = {}
|
|
for (category, x_cat) in x.items():
|
|
if category not in self.classifiers:
|
|
continue
|
|
y[category] = []
|
|
# x_cat = np.array(x_cat)
|
|
proba = self.classifiers[category].predict_proba(x_cat)
|
|
for i in range(len(proba)):
|
|
if proba[i][1] >= self.threshold:
|
|
y[category] += [[1]]
|
|
else:
|
|
y[category] += [[0]]
|
|
return y
|
|
|
|
def evaluate(self, instance):
|
|
x = self.x([instance])
|
|
y_true = self.y([instance])
|
|
y_pred = self.predict(x)
|
|
tp, tn, fp, fn = 0, 0, 0, 0
|
|
for category in y_true.keys():
|
|
for i in range(len(y_true[category])):
|
|
if y_pred[category][i][0] == 1:
|
|
if y_true[category][i][0] == 1:
|
|
tp += 1
|
|
else:
|
|
fp += 1
|
|
else:
|
|
if y_true[category][i][0] == 1:
|
|
fn += 1
|
|
else:
|
|
tn += 1
|
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|