You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
57 lines
1.8 KiB
57 lines
1.8 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Union
|
|
|
|
import gurobipy as gp
|
|
import numpy as np
|
|
from gurobipy import GRB, quicksum
|
|
from networkx import Graph
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from .stab import MaxWeightStableSetGenerator
|
|
from miplearn.solvers.gurobi import GurobiModel
|
|
from ..io import read_pkl_gz
|
|
|
|
|
|
@dataclass
|
|
class MinWeightVertexCoverData:
|
|
graph: Graph
|
|
weights: np.ndarray
|
|
|
|
|
|
class MinWeightVertexCoverGenerator:
|
|
def __init__(
|
|
self,
|
|
w: rv_frozen = uniform(loc=10.0, scale=1.0),
|
|
n: rv_frozen = randint(low=250, high=251),
|
|
p: rv_frozen = uniform(loc=0.05, scale=0.0),
|
|
fix_graph: bool = True,
|
|
):
|
|
self._generator = MaxWeightStableSetGenerator(w, n, p, fix_graph)
|
|
|
|
def generate(self, n_samples: int) -> List[MinWeightVertexCoverData]:
|
|
return [
|
|
MinWeightVertexCoverData(s.graph, s.weights)
|
|
for s in self._generator.generate(n_samples)
|
|
]
|
|
|
|
|
|
def build_vertexcover_model_gurobipy(
|
|
data: Union[str, MinWeightVertexCoverData]
|
|
) -> GurobiModel:
|
|
if isinstance(data, str):
|
|
data = read_pkl_gz(data)
|
|
assert isinstance(data, MinWeightVertexCoverData)
|
|
model = gp.Model()
|
|
nodes = list(data.graph.nodes)
|
|
x = model.addVars(nodes, vtype=GRB.BINARY, name="x")
|
|
model.setObjective(quicksum(data.weights[i] * x[i] for i in nodes))
|
|
for v1, v2 in data.graph.edges:
|
|
model.addConstr(x[v1] + x[v2] >= 1)
|
|
model.update()
|
|
return GurobiModel(model)
|