mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
192 lines
6.5 KiB
Python
192 lines
6.5 KiB
Python
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Union
|
|
|
|
import gurobipy as gp
|
|
import numpy as np
|
|
from gurobipy import GRB
|
|
from scipy.stats import uniform, randint
|
|
from scipy.stats.distributions import rv_frozen
|
|
|
|
from miplearn.io import read_pkl_gz
|
|
from miplearn.solvers.gurobi import GurobiModel
|
|
|
|
|
|
@dataclass
|
|
class MultiKnapsackData:
|
|
"""Data for the multi-dimensional knapsack problem
|
|
|
|
Args
|
|
----
|
|
prices
|
|
Item prices.
|
|
capacities
|
|
Knapsack capacities.
|
|
weights
|
|
Matrix of item weights.
|
|
"""
|
|
|
|
prices: np.ndarray
|
|
capacities: np.ndarray
|
|
weights: np.ndarray
|
|
|
|
|
|
# noinspection PyPep8Naming
|
|
class MultiKnapsackGenerator:
|
|
"""Random instance generator for the multi-dimensional knapsack problem.
|
|
|
|
Generates new instances by creating random items and knapsacks according to the
|
|
provided probability distributions. Each instance has a random number of items
|
|
(variables) and knapsacks (constraints), with weights, prices, and capacities
|
|
sampled independently.
|
|
|
|
Parameters
|
|
----------
|
|
n: rv_discrete
|
|
Probability distribution for the number of items (or variables).
|
|
m: rv_discrete
|
|
Probability distribution for the number of knapsacks (or constraints).
|
|
w: rv_continuous
|
|
Probability distribution for the item weights.
|
|
K: rv_continuous
|
|
Probability distribution for the profit correlation coefficient.
|
|
u: rv_continuous
|
|
Probability distribution for the profit multiplier.
|
|
alpha: rv_continuous
|
|
Probability distribution for the tightness ratio.
|
|
round: boolean
|
|
If true, all prices, weights and capacities are rounded to the nearest
|
|
integer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n: rv_frozen = randint(low=100, high=101),
|
|
m: rv_frozen = randint(low=30, high=31),
|
|
w: rv_frozen = randint(low=0, high=1000),
|
|
K: rv_frozen = randint(low=500, high=501),
|
|
u: rv_frozen = uniform(loc=0.0, scale=1.0),
|
|
alpha: rv_frozen = uniform(loc=0.25, scale=0.0),
|
|
round: bool = True,
|
|
):
|
|
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
|
assert isinstance(m, rv_frozen), "m should be a SciPy probability distribution"
|
|
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
|
|
assert isinstance(K, rv_frozen), "K should be a SciPy probability distribution"
|
|
assert isinstance(u, rv_frozen), "u should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
alpha, rv_frozen
|
|
), "alpha should be a SciPy probability distribution"
|
|
|
|
self.n = n
|
|
self.m = m
|
|
self.w = w
|
|
self.u = u
|
|
self.K = K
|
|
self.alpha = alpha
|
|
self.round = round
|
|
|
|
def generate(self, n_samples: int) -> List[MultiKnapsackData]:
|
|
def _sample() -> MultiKnapsackData:
|
|
n = self.n.rvs()
|
|
m = self.m.rvs()
|
|
w = np.array([self.w.rvs(n) for _ in range(m)])
|
|
u = self.u.rvs(n)
|
|
K = self.K.rvs()
|
|
alpha = self.alpha.rvs(m)
|
|
p = np.array([w[:, j].sum() / m + K * u[j] for j in range(n)])
|
|
b = np.array([w[i, :].sum() * alpha[i] for i in range(m)])
|
|
if self.round:
|
|
p = p.round()
|
|
b = b.round()
|
|
w = w.round()
|
|
return MultiKnapsackData(p, b, w)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
|
|
class MultiKnapsackPerturber:
|
|
"""Perturbation generator for existing multi-dimensional knapsack instances.
|
|
|
|
Takes an existing MultiKnapsackData instance and generates new instances by
|
|
applying randomization factors to the existing weights and prices while keeping
|
|
the structure (number of items and knapsacks) fixed.
|
|
|
|
Parameters
|
|
----------
|
|
w_jitter: rv_continuous
|
|
Probability distribution for randomization factors applied to item weights.
|
|
p_jitter: rv_continuous
|
|
Probability distribution for randomization factors applied to item prices.
|
|
alpha_jitter: rv_continuous
|
|
Probability distribution for randomization factors applied to knapsack capacities.
|
|
round: boolean
|
|
If true, all perturbed prices, weights and capacities are rounded to the
|
|
nearest integer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
w_jitter: rv_frozen = uniform(loc=0.9, scale=0.2),
|
|
p_jitter: rv_frozen = uniform(loc=0.9, scale=0.2),
|
|
alpha_jitter: rv_frozen = uniform(loc=0.9, scale=0.2),
|
|
round: bool = True,
|
|
):
|
|
assert isinstance(
|
|
w_jitter, rv_frozen
|
|
), "w_jitter should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
p_jitter, rv_frozen
|
|
), "p_jitter should be a SciPy probability distribution"
|
|
assert isinstance(
|
|
alpha_jitter, rv_frozen
|
|
), "alpha_jitter should be a SciPy probability distribution"
|
|
|
|
self.w_jitter = w_jitter
|
|
self.p_jitter = p_jitter
|
|
self.alpha_jitter = alpha_jitter
|
|
self.round = round
|
|
|
|
def perturb(
|
|
self,
|
|
instance: MultiKnapsackData,
|
|
n_samples: int,
|
|
) -> List[MultiKnapsackData]:
|
|
def _sample() -> MultiKnapsackData:
|
|
m, n = instance.weights.shape
|
|
w_factors = np.array([self.w_jitter.rvs(n) for _ in range(m)])
|
|
p_factors = self.p_jitter.rvs(n)
|
|
alpha_factors = self.alpha_jitter.rvs(m)
|
|
|
|
w = instance.weights * w_factors
|
|
p = instance.prices * p_factors
|
|
b = instance.capacities * alpha_factors
|
|
|
|
if self.round:
|
|
p = p.round()
|
|
b = b.round()
|
|
w = w.round()
|
|
return MultiKnapsackData(p, b, w)
|
|
|
|
return [_sample() for _ in range(n_samples)]
|
|
|
|
|
|
def build_multiknapsack_model_gurobipy(
|
|
data: Union[str, MultiKnapsackData]
|
|
) -> GurobiModel:
|
|
"""Converts multi-knapsack problem data into a concrete Gurobipy model."""
|
|
if isinstance(data, str):
|
|
data = read_pkl_gz(data)
|
|
assert isinstance(data, MultiKnapsackData)
|
|
|
|
model = gp.Model()
|
|
m, n = data.weights.shape
|
|
x = model.addMVar(n, vtype=GRB.BINARY, name="x")
|
|
model.addConstr(data.weights @ x <= data.capacities)
|
|
model.setObjective(-data.prices @ x)
|
|
model.update()
|
|
return GurobiModel(model)
|