You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
211 lines
7.3 KiB
211 lines
7.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from typing import Tuple, Optional
|
|
|
|
import numpy as np
|
|
|
|
from miplearn.extractors.abstract import FeaturesExtractor
|
|
from miplearn.h5 import H5File
|
|
|
|
|
|
class AlvLouWeh2017Extractor(FeaturesExtractor):
|
|
def __init__(
|
|
self,
|
|
with_m1: bool = True,
|
|
with_m2: bool = True,
|
|
with_m3: bool = True,
|
|
):
|
|
self.with_m1 = with_m1
|
|
self.with_m2 = with_m2
|
|
self.with_m3 = with_m3
|
|
|
|
def get_instance_features(self, h5: H5File) -> np.ndarray:
|
|
raise NotImplemented()
|
|
|
|
def get_var_features(self, h5: H5File) -> np.ndarray:
|
|
"""
|
|
Computes static variable features described in:
|
|
Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
|
approximation of strong branching. INFORMS Journal on Computing, 29(1),
|
|
185-195.
|
|
"""
|
|
A = h5.get_sparse("static_constr_lhs")
|
|
b = h5.get_array("static_constr_rhs")
|
|
c = h5.get_array("static_var_obj_coeffs")
|
|
c_sa_up = h5.get_array("lp_var_sa_obj_up")
|
|
c_sa_down = h5.get_array("lp_var_sa_obj_down")
|
|
values = h5.get_array("lp_var_values")
|
|
|
|
assert A is not None
|
|
assert b is not None
|
|
assert c is not None
|
|
|
|
nvars = len(c)
|
|
curr = 0
|
|
max_n_features = 40
|
|
features = np.zeros((nvars, max_n_features))
|
|
|
|
def push(v: np.ndarray) -> None:
|
|
nonlocal curr
|
|
assert v.shape == (nvars,), f"{v.shape} != ({nvars},)"
|
|
features[:, curr] = v
|
|
curr += 1
|
|
|
|
def push_sign_abs(v: np.ndarray) -> None:
|
|
assert v.shape == (nvars,), f"{v.shape} != ({nvars},)"
|
|
push(np.sign(v))
|
|
push(np.abs(v))
|
|
|
|
def maxmin(M: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
M_max = np.ravel(M.max(axis=0).todense())
|
|
M_min = np.ravel(M.min(axis=0).todense())
|
|
return M_max, M_min
|
|
|
|
with np.errstate(divide="ignore", invalid="ignore"):
|
|
# Feature 1
|
|
push(np.sign(c))
|
|
|
|
# Feature 2
|
|
c_pos_sum = c[c > 0].sum()
|
|
push(np.abs(c) / c_pos_sum)
|
|
|
|
# Feature 3
|
|
c_neg_sum = -c[c < 0].sum()
|
|
push(np.abs(c) / c_neg_sum)
|
|
|
|
if A is not None and self.with_m1:
|
|
# Compute A_ji / |b_j|
|
|
M1 = A.T.multiply(1.0 / np.abs(b)).T.tocsr()
|
|
|
|
# Select rows with positive b_j and compute max/min
|
|
M1_pos = M1[b > 0, :]
|
|
if M1_pos.shape[0] > 0:
|
|
M1_pos_max = np.asarray(M1_pos.max(axis=0).todense()).flatten()
|
|
M1_pos_min = np.asarray(M1_pos.min(axis=0).todense()).flatten()
|
|
else:
|
|
M1_pos_max = np.zeros(nvars)
|
|
M1_pos_min = np.zeros(nvars)
|
|
|
|
# Select rows with negative b_j and compute max/min
|
|
M1_neg = M1[b < 0, :]
|
|
if M1_neg.shape[0] > 0:
|
|
M1_neg_max = np.asarray(M1_neg.max(axis=0).todense()).flatten()
|
|
M1_neg_min = np.asarray(M1_neg.min(axis=0).todense()).flatten()
|
|
else:
|
|
M1_neg_max = np.zeros(nvars)
|
|
M1_neg_min = np.zeros(nvars)
|
|
|
|
# Features 4-11
|
|
push_sign_abs(M1_pos_min)
|
|
push_sign_abs(M1_pos_max)
|
|
push_sign_abs(M1_neg_min)
|
|
push_sign_abs(M1_neg_max)
|
|
|
|
if A is not None and self.with_m2:
|
|
# Compute |c_i| / A_ij
|
|
M2 = A.power(-1).multiply(np.abs(c)).tocsc()
|
|
|
|
# Compute max/min
|
|
M2_max, M2_min = maxmin(M2)
|
|
|
|
# Make copies of M2 and erase elements based on sign(c)
|
|
M2_pos_max = M2_max.copy()
|
|
M2_neg_max = M2_max.copy()
|
|
M2_pos_min = M2_min.copy()
|
|
M2_neg_min = M2_min.copy()
|
|
M2_pos_max[c <= 0] = 0
|
|
M2_pos_min[c <= 0] = 0
|
|
M2_neg_max[c >= 0] = 0
|
|
M2_neg_min[c >= 0] = 0
|
|
|
|
# Features 12-19
|
|
push_sign_abs(M2_pos_min)
|
|
push_sign_abs(M2_pos_max)
|
|
push_sign_abs(M2_neg_min)
|
|
push_sign_abs(M2_neg_max)
|
|
|
|
if A is not None and self.with_m3:
|
|
# Compute row sums
|
|
S_pos = A.maximum(0).sum(axis=1)
|
|
S_neg = np.abs(A.minimum(0).sum(axis=1))
|
|
|
|
# Divide A by positive and negative row sums
|
|
M3_pos = A.multiply(1 / S_pos).tocsr()
|
|
M3_neg = A.multiply(1 / S_neg).tocsr()
|
|
|
|
# Remove +inf and -inf generated by division by zero
|
|
M3_pos.data[~np.isfinite(M3_pos.data)] = 0.0
|
|
M3_neg.data[~np.isfinite(M3_neg.data)] = 0.0
|
|
M3_pos.eliminate_zeros()
|
|
M3_neg.eliminate_zeros()
|
|
|
|
# Split each matrix into positive and negative parts
|
|
M3_pos_pos = M3_pos.maximum(0)
|
|
M3_pos_neg = -(M3_pos.minimum(0))
|
|
M3_neg_pos = M3_neg.maximum(0)
|
|
M3_neg_neg = -(M3_neg.minimum(0))
|
|
|
|
# Calculate max/min
|
|
M3_pos_pos_max, M3_pos_pos_min = maxmin(M3_pos_pos)
|
|
M3_pos_neg_max, M3_pos_neg_min = maxmin(M3_pos_neg)
|
|
M3_neg_pos_max, M3_neg_pos_min = maxmin(M3_neg_pos)
|
|
M3_neg_neg_max, M3_neg_neg_min = maxmin(M3_neg_neg)
|
|
|
|
# Features 20-35
|
|
push_sign_abs(M3_pos_pos_max)
|
|
push_sign_abs(M3_pos_pos_min)
|
|
push_sign_abs(M3_pos_neg_max)
|
|
push_sign_abs(M3_pos_neg_min)
|
|
push_sign_abs(M3_neg_pos_max)
|
|
push_sign_abs(M3_neg_pos_min)
|
|
push_sign_abs(M3_neg_neg_max)
|
|
push_sign_abs(M3_neg_neg_min)
|
|
|
|
# Feature 36: only available during B&B
|
|
|
|
# Feature 37
|
|
if values is not None:
|
|
push(
|
|
np.minimum(
|
|
values - np.floor(values),
|
|
np.ceil(values) - values,
|
|
)
|
|
)
|
|
|
|
# Features 38-43: only available during B&B
|
|
|
|
# Feature 44
|
|
if c_sa_up is not None:
|
|
assert c_sa_down is not None
|
|
|
|
# Features 44 and 46
|
|
push(np.sign(c_sa_up))
|
|
push(np.sign(c_sa_down))
|
|
|
|
# Feature 45 is duplicated
|
|
|
|
# Feature 47-48
|
|
push(np.log(c - c_sa_down / np.sign(c)))
|
|
push(np.log(c - c_sa_up / np.sign(c)))
|
|
|
|
# Features 49-64: only available during B&B
|
|
|
|
features = features[:, 0:curr]
|
|
_fix_infinity(features)
|
|
return features
|
|
|
|
def get_constr_features(self, h5: H5File) -> np.ndarray:
|
|
raise NotImplemented()
|
|
|
|
|
|
def _fix_infinity(m: Optional[np.ndarray]) -> None:
|
|
if m is None:
|
|
return
|
|
masked = np.ma.masked_invalid(m) # type: ignore
|
|
max_values = np.max(masked, axis=0)
|
|
min_values = np.min(masked, axis=0)
|
|
m[:] = np.maximum(np.minimum(m, max_values), min_values)
|
|
m[~np.isfinite(m)] = 0.0
|