You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/extractors/fields.py

70 lines
2.4 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Optional, List
import numpy as np
from miplearn.extractors.abstract import FeaturesExtractor
from miplearn.h5 import H5File
class H5FieldsExtractor(FeaturesExtractor):
def __init__(
self,
instance_fields: Optional[List[str]] = None,
var_fields: Optional[List[str]] = None,
constr_fields: Optional[List[str]] = None,
):
self.instance_fields = instance_fields
self.var_fields = var_fields
self.constr_fields = constr_fields
def get_instance_features(self, h5: H5File) -> np.ndarray:
if self.instance_fields is None:
raise Exception("No instance fields provided")
x = []
for field in self.instance_fields:
try:
data = h5.get_array(field)
except ValueError:
data = h5.get_scalar(field)
assert data is not None
x.append(data)
x = np.hstack(x)
assert len(x.shape) == 1
return x
def get_var_features(self, h5: H5File) -> np.ndarray:
var_types = h5.get_array("static_var_types")
assert var_types is not None
n_vars = len(var_types)
if self.var_fields is None:
raise Exception("No var fields provided")
return self._extract(h5, self.var_fields, n_vars)
def get_constr_features(self, h5: H5File) -> np.ndarray:
constr_sense = h5.get_array("static_constr_sense")
assert constr_sense is not None
n_constr = len(constr_sense)
if self.constr_fields is None:
raise Exception("No constr fields provided")
return self._extract(h5, self.constr_fields, n_constr)
def _extract(self, h5, fields, n_expected):
x = []
for field in fields:
try:
data = h5.get_array(field)
except ValueError:
v = h5.get_scalar(field)
data = np.repeat(v, n_expected)
assert data is not None
assert len(data.shape) == 1
assert data.shape[0] == n_expected
x.append(data)
features = np.vstack(x).T
assert len(features.shape) == 2
assert features.shape[0] == n_expected
return features