You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/problems/tests/test_tsp.py

74 lines
2.5 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from miplearn import LearningSolver
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
import numpy as np
from numpy.linalg import norm
from scipy.spatial.distance import pdist, squareform
from scipy.stats import uniform, randint
def test_generator():
instances = TravelingSalesmanGenerator(x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=100, high=101),
gamma=uniform(loc=0.95, scale=0.1),
fix_cities=True).generate(100)
assert len(instances) == 100
assert instances[0].n_cities == 100
assert norm(instances[0].distances - instances[0].distances.T) < 1e-6
d = [instance.distances[0,1] for instance in instances]
assert np.std(d) > 0
def test_instance():
n_cities = 4
distances = np.array([
[0., 1., 2., 1.],
[1., 0., 1., 2.],
[2., 1., 0., 1.],
[1., 2., 1., 0.],
])
instance = TravelingSalesmanInstance(n_cities, distances)
for solver_name in ['gurobi']:
solver = LearningSolver(solver=solver_name)
solver.solve(instance)
x = instance.solution["x"]
assert x[0,1] == 1.0
assert x[0,2] == 0.0
assert x[0,3] == 1.0
assert x[1,2] == 1.0
assert x[1,3] == 0.0
assert x[2,3] == 1.0
assert instance.lower_bound == 4.0
assert instance.upper_bound == 4.0
def test_subtour():
n_cities = 6
cities = np.array([
[0., 0.],
[1., 0.],
[2., 0.],
[3., 0.],
[0., 1.],
[3., 1.],
])
distances = squareform(pdist(cities))
instance = TravelingSalesmanInstance(n_cities, distances)
for solver_name in ['gurobi']:
solver = LearningSolver(solver=solver_name)
solver.solve(instance)
assert hasattr(instance, "found_violated_lazy_constraints")
assert hasattr(instance, "found_violated_user_cuts")
x = instance.solution["x"]
assert x[0,1] == 1.0
assert x[0,4] == 1.0
assert x[1,2] == 1.0
assert x[2,3] == 1.0
assert x[3,5] == 1.0
assert x[4,5] == 1.0
solver.fit([instance])
solver.solve(instance)