You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/tests/__init__.py

405 lines
12 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Any, Dict
import numpy as np
from miplearn.features import Constraint, Variable
from miplearn.solvers.internal import InternalSolver
inf = float("inf")
# NOTE:
# This file is in the main source folder, so that it can be called from Julia.
def _round_constraints(constraints: Dict[str, Constraint]) -> Dict[str, Constraint]:
for (cname, c) in constraints.items():
for attr in ["slack", "dual_value"]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
return constraints
def _round_variables(vars: Dict[str, Variable]) -> Dict[str, Variable]:
for (cname, c) in vars.items():
for attr in [
"upper_bound",
"lower_bound",
"obj_coeff",
"value",
"reduced_cost",
"sa_obj_up",
"sa_obj_down",
"sa_ub_up",
"sa_ub_down",
"sa_lb_up",
"sa_lb_down",
]:
if getattr(c, attr) is not None:
setattr(c, attr, round(getattr(c, attr), 6))
if c.alvarez_2017 is not None:
c.alvarez_2017 = list(np.round(c.alvarez_2017, 6))
return vars
def _remove_unsupported_constr_attrs(
solver: InternalSolver,
constraints: Dict[str, Constraint],
) -> Dict[str, Constraint]:
for (cname, c) in constraints.items():
to_remove = []
for k in c.__dict__.keys():
if k not in solver.get_constraint_attrs():
to_remove.append(k)
for k in to_remove:
setattr(c, k, None)
return constraints
def _remove_unsupported_var_attrs(
solver: InternalSolver,
variables: Dict[str, Variable],
) -> Dict[str, Variable]:
for (cname, c) in variables.items():
to_remove = []
for k in c.__dict__.keys():
if k not in solver.get_variable_attrs():
to_remove.append(k)
for k in to_remove:
setattr(c, k, None)
return variables
def run_internal_solver_tests(solver: InternalSolver) -> None:
run_basic_usage_tests(solver.clone())
run_warm_start_tests(solver.clone())
run_infeasibility_tests(solver.clone())
run_iteration_cb_tests(solver.clone())
if solver.are_callbacks_supported():
run_lazy_cb_tests(solver.clone())
def run_basic_usage_tests(solver: InternalSolver) -> None:
# Create and set instance
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
# Fetch variables (after-load)
assert_equals(
_round_variables(solver.get_variables()),
_remove_unsupported_var_attrs(
solver,
{
"x[0]": Variable(
lower_bound=0.0,
obj_coeff=505.0,
type="B",
upper_bound=1.0,
),
"x[1]": Variable(
lower_bound=0.0,
obj_coeff=352.0,
type="B",
upper_bound=1.0,
),
"x[2]": Variable(
lower_bound=0.0,
obj_coeff=458.0,
type="B",
upper_bound=1.0,
),
"x[3]": Variable(
lower_bound=0.0,
obj_coeff=220.0,
type="B",
upper_bound=1.0,
),
},
),
)
# Fetch constraints (after-load)
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
)
},
)
# Solve linear programming relaxation
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats.lp_value is not None
assert_equals(round(lp_stats.lp_value, 3), 1287.923)
assert lp_stats.lp_log is not None
assert len(lp_stats.lp_log) > 100
assert lp_stats.lp_wallclock_time is not None
assert lp_stats.lp_wallclock_time > 0
# Fetch variables (after-load)
assert_equals(
_round_variables(solver.get_variables()),
_remove_unsupported_var_attrs(
solver,
{
"x[0]": Variable(
basis_status="U",
lower_bound=0.0,
obj_coeff=505.0,
reduced_cost=193.615385,
sa_lb_down=-inf,
sa_lb_up=1.0,
sa_obj_down=311.384615,
sa_obj_up=inf,
sa_ub_down=0.913043,
sa_ub_up=2.043478,
type="C",
upper_bound=1.0,
value=1.0,
),
"x[1]": Variable(
basis_status="B",
lower_bound=0.0,
obj_coeff=352.0,
reduced_cost=0.0,
sa_lb_down=-inf,
sa_lb_up=0.923077,
sa_obj_down=317.777778,
sa_obj_up=570.869565,
sa_ub_down=0.923077,
sa_ub_up=inf,
type="C",
upper_bound=1.0,
value=0.923077,
),
"x[2]": Variable(
basis_status="U",
lower_bound=0.0,
obj_coeff=458.0,
reduced_cost=187.230769,
sa_lb_down=-inf,
sa_lb_up=1.0,
sa_obj_down=270.769231,
sa_obj_up=inf,
sa_ub_down=0.9,
sa_ub_up=2.2,
type="C",
upper_bound=1.0,
value=1.0,
),
"x[3]": Variable(
basis_status="L",
lower_bound=0.0,
obj_coeff=220.0,
reduced_cost=-23.692308,
sa_lb_down=-0.111111,
sa_lb_up=1.0,
sa_obj_down=-inf,
sa_obj_up=243.692308,
sa_ub_down=0.0,
sa_ub_up=inf,
type="C",
upper_bound=1.0,
value=0.0,
),
},
),
)
# Fetch constraints (after-lp)
assert_equals(
_round_constraints(solver.get_constraints()),
_remove_unsupported_constr_attrs(
solver,
{
"eq_capacity": Constraint(
lazy=False,
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
slack=0.0,
dual_value=13.538462,
sa_rhs_down=43.0,
sa_rhs_up=69.0,
basis_status="N",
)
},
),
)
# Solve MIP
mip_stats = solver.solve(
tee=True,
iteration_cb=None,
lazy_cb=None,
user_cut_cb=None,
)
assert not solver.is_infeasible()
assert len(mip_stats["MIP log"]) > 100
assert_equals(mip_stats["Lower bound"], 1183.0)
assert_equals(mip_stats["Upper bound"], 1183.0)
assert_equals(mip_stats["Sense"], "max")
assert isinstance(mip_stats["Wallclock time"], float)
# Fetch variables (after-load)
assert_equals(
_round_variables(solver.get_variables()),
_remove_unsupported_var_attrs(
solver,
{
"x[0]": Variable(
lower_bound=0.0,
obj_coeff=505.0,
type="B",
upper_bound=1.0,
value=1.0,
),
"x[1]": Variable(
lower_bound=0.0,
obj_coeff=352.0,
type="B",
upper_bound=1.0,
value=0.0,
),
"x[2]": Variable(
lower_bound=0.0,
obj_coeff=458.0,
type="B",
upper_bound=1.0,
value=1.0,
),
"x[3]": Variable(
lower_bound=0.0,
obj_coeff=220.0,
type="B",
upper_bound=1.0,
value=1.0,
),
},
),
)
# Fetch constraints (after-mip)
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
slack=6.0,
),
},
)
# Build a new constraint
cut = Constraint(lhs={"x[0]": 1.0}, sense="<", rhs=0.0)
assert not solver.is_constraint_satisfied(cut)
# Add new constraint and verify that it is listed. Modifying the model should
# also clear the current solution.
solver.add_constraint(cut, "cut")
assert_equals(
_round_constraints(solver.get_constraints()),
{
"eq_capacity": Constraint(
lhs={"x[0]": 23.0, "x[1]": 26.0, "x[2]": 20.0, "x[3]": 18.0},
rhs=67.0,
sense="<",
),
"cut": Constraint(
lhs={"x[0]": 1.0},
rhs=0.0,
sense="<",
),
},
)
# Re-solve MIP and verify that constraint affects the solution
stats = solver.solve()
assert_equals(stats["Lower bound"], 1030.0)
assert solver.is_constraint_satisfied(cut)
# Remove the new constraint
solver.remove_constraint("cut")
# New constraint should no longer affect solution
stats = solver.solve()
assert_equals(stats["Lower bound"], 1183.0)
def run_warm_start_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
if stats["Warm start value"] is not None:
assert_equals(stats["Warm start value"], 725.0)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats["Warm start value"] is None
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert_equals(stats["Lower bound"], 725.0)
assert_equals(stats["Upper bound"], 725.0)
def run_infeasibility_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_infeasible()
solver.set_instance(instance)
mip_stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert mip_stats["Upper bound"] is None
assert mip_stats["Lower bound"] is None
lp_stats = solver.solve_lp()
assert solver.get_solution() is None
assert lp_stats.lp_value is None
def run_iteration_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
solver.set_instance(instance)
count = 0
def custom_iteration_cb() -> bool:
nonlocal count
count += 1
return count < 5
solver.solve(iteration_cb=custom_iteration_cb)
assert_equals(count, 5)
def run_lazy_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
relsol = cb_solver.get_solution()
assert relsol is not None
assert relsol["x[0]"] is not None
if relsol["x[0]"] > 0:
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
solver.set_instance(instance, model)
solver.solve(lazy_cb=lazy_cb)
solution = solver.get_solution()
assert solution is not None
assert_equals(solution["x[0]"], 0.0)
def assert_equals(left: Any, right: Any) -> None:
assert left == right, f"left:\n{left}\nright:\n{right}"