You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/problems/test_multiknapsack.py

62 lines
2.0 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import numpy as np
from scipy.stats import uniform, randint
from miplearn.problems.multiknapsack import (
MultiKnapsackGenerator,
MultiKnapsackData,
build_multiknapsack_model_gurobipy,
)
def test_knapsack_generator() -> None:
np.random.seed(42)
gen = MultiKnapsackGenerator(
n=randint(low=5, high=6),
m=randint(low=3, high=4),
w=randint(low=0, high=1000),
K=randint(low=500, high=501),
u=uniform(loc=0.0, scale=1.0),
alpha=uniform(loc=0.25, scale=0.0),
fix_w=True,
w_jitter=uniform(loc=0.9, scale=0.2),
p_jitter=uniform(loc=0.9, scale=0.2),
round=True,
)
data = gen.generate(2)
assert data[0].prices.tolist() == [433.0, 477.0, 802.0, 494.0, 458.0]
assert data[0].capacities.tolist() == [458.0, 357.0, 392.0]
assert data[0].weights.tolist() == [
[111.0, 392.0, 945.0, 276.0, 108.0],
[64.0, 633.0, 20.0, 602.0, 110.0],
[510.0, 203.0, 303.0, 469.0, 85.0],
]
assert data[1].prices.tolist() == [344.0, 527.0, 658.0, 519.0, 460.0]
assert data[1].capacities.tolist() == [449.0, 377.0, 380.0]
assert data[1].weights.tolist() == [
[92.0, 473.0, 871.0, 264.0, 96.0],
[67.0, 664.0, 21.0, 628.0, 129.0],
[436.0, 209.0, 309.0, 481.0, 86.0],
]
def test_knapsack_model() -> None:
data = MultiKnapsackData(
prices=np.array([344.0, 527.0, 658.0, 519.0, 460.0]),
capacities=np.array([449.0, 377.0, 380.0]),
weights=np.array(
[
[92.0, 473.0, 871.0, 264.0, 96.0],
[67.0, 664.0, 21.0, 628.0, 129.0],
[436.0, 209.0, 309.0, 481.0, 86.0],
]
),
)
model = build_multiknapsack_model_gurobipy(data)
model.optimize()
assert model.inner.objVal == -460.0