You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/solvers/test_internal_solver.py

220 lines
6.9 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import logging
from io import StringIO
from warnings import warn
import pyomo.environ as pe
from miplearn.solvers import _RedirectOutput
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.pyomo.base import BasePyomoSolver
from . import (
_get_knapsack_instance,
get_internal_solvers,
)
from ..fixtures.infeasible import get_infeasible_instance
logger = logging.getLogger(__name__)
def test_redirect_output():
import sys
original_stdout = sys.stdout
io = StringIO()
with _RedirectOutput([io]):
print("Hello world")
assert sys.stdout == original_stdout
assert io.getvalue() == "Hello world\n"
def test_internal_solver_warm_starts():
for solver_class in get_internal_solvers():
logger.info("Solver: %s" % solver_class)
instance = _get_knapsack_instance(solver_class)
model = instance.to_model()
solver = solver_class()
solver.set_instance(instance, model)
solver.set_warm_start(
{
"x": {
0: 1.0,
1: 0.0,
2: 0.0,
3: 1.0,
}
}
)
stats = solver.solve(tee=True)
if stats["Warm start value"] is not None:
assert stats["Warm start value"] == 725.0
else:
warn(f"{solver_class.__name__} should set warm start value")
solver.set_warm_start(
{
"x": {
0: 1.0,
1: 1.0,
2: 1.0,
3: 1.0,
}
}
)
stats = solver.solve(tee=True)
assert stats["Warm start value"] is None
solver.fix(
{
"x": {
0: 1.0,
1: 0.0,
2: 0.0,
3: 1.0,
}
}
)
stats = solver.solve(tee=True)
assert stats["Lower bound"] == 725.0
assert stats["Upper bound"] == 725.0
def test_internal_solver():
for solver_class in get_internal_solvers():
logger.info("Solver: %s" % solver_class)
instance = _get_knapsack_instance(solver_class)
model = instance.to_model()
solver = solver_class()
solver.set_instance(instance, model)
stats = solver.solve_lp()
assert not solver.is_infeasible()
assert round(stats["LP value"], 3) == 1287.923
assert len(stats["LP log"]) > 100
solution = solver.get_solution()
assert round(solution["x"][0], 3) == 1.000
assert round(solution["x"][1], 3) == 0.923
assert round(solution["x"][2], 3) == 1.000
assert round(solution["x"][3], 3) == 0.000
stats = solver.solve(tee=True)
assert not solver.is_infeasible()
assert len(stats["MIP log"]) > 100
assert stats["Lower bound"] == 1183.0
assert stats["Upper bound"] == 1183.0
assert stats["Sense"] == "max"
assert isinstance(stats["Wallclock time"], float)
solution = solver.get_solution()
assert solution["x"][0] == 1.0
assert solution["x"][1] == 0.0
assert solution["x"][2] == 1.0
assert solution["x"][3] == 1.0
# Add a brand new constraint
if isinstance(solver, BasePyomoSolver):
model.cut = pe.Constraint(expr=model.x[0] <= 0.0, name="cut")
solver.add_constraint(model.cut)
elif isinstance(solver, GurobiSolver):
x = model.getVarByName("x[0]")
solver.add_constraint(x <= 0.0, name="cut")
else:
raise Exception("Illegal state")
# New constraint should affect solution and should be listed in
# constraint ids
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
stats = solver.solve()
assert stats["Lower bound"] == 1030.0
assert solver.get_sense() == "max"
assert solver.get_constraint_sense("cut") == "<"
assert solver.get_constraint_sense("eq_capacity") == "<"
# Verify slacks
assert solver.get_inequality_slacks() == {
"cut": 0.0,
"eq_capacity": 3.0,
}
if isinstance(solver, GurobiSolver):
# Extract the new constraint
cobj = solver.extract_constraint("cut")
# New constraint should no longer affect solution and should no longer
# be listed in constraint ids
assert solver.get_constraint_ids() == ["eq_capacity"]
stats = solver.solve()
assert stats["Lower bound"] == 1183.0
# New constraint should not be satisfied by current solution
assert not solver.is_constraint_satisfied(cobj)
# Re-add constraint
solver.add_constraint(cobj)
# Constraint should affect solution again
assert solver.get_constraint_ids() == ["eq_capacity", "cut"]
stats = solver.solve()
assert stats["Lower bound"] == 1030.0
# New constraint should now be satisfied
assert solver.is_constraint_satisfied(cobj)
# Relax problem and make cut into an equality constraint
solver.relax()
solver.set_constraint_sense("cut", "=")
stats = solver.solve()
assert round(stats["Lower bound"]) == 1030.0
assert round(solver.get_dual("eq_capacity")) == 0.0
def test_relax():
for solver_class in get_internal_solvers():
instance = _get_knapsack_instance(solver_class)
solver = solver_class()
solver.set_instance(instance)
solver.relax()
stats = solver.solve()
assert round(stats["Lower bound"]) == 1288.0
def test_infeasible_instance():
for solver_class in get_internal_solvers():
instance = get_infeasible_instance(solver_class)
solver = solver_class()
solver.set_instance(instance)
stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert stats["Upper bound"] is None
assert stats["Lower bound"] is None
stats = solver.solve_lp()
assert solver.get_solution() is None
assert stats["LP value"] is None
assert solver.get_value("x", 0) is None
def test_iteration_cb():
for solver_class in get_internal_solvers():
logger.info("Solver: %s" % solver_class)
instance = _get_knapsack_instance(solver_class)
solver = solver_class()
solver.set_instance(instance)
count = 0
def custom_iteration_cb():
nonlocal count
count += 1
return count < 5
solver.solve(iteration_cb=custom_iteration_cb)
assert count == 5