You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
8.3 KiB
241 lines
8.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
from p_tqdm import p_umap
|
|
from tqdm import tqdm
|
|
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.components.static_lazy import LazyConstraint
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DropRedundantInequalitiesStep(Component):
|
|
"""
|
|
Component that predicts which inequalities are likely loose in the LP and removes
|
|
them. Optionally, double checks after the problem is solved that all dropped
|
|
inequalities were in fact redundant, and, if not, re-adds them to the problem.
|
|
|
|
This component does not work on MIPs. All integrality constraints must be relaxed
|
|
before this component is used.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier=CountingClassifier(),
|
|
threshold=0.95,
|
|
slack_tolerance=1e-5,
|
|
check_feasibility=True,
|
|
violation_tolerance=1e-5,
|
|
max_iterations=3,
|
|
):
|
|
self.classifiers = {}
|
|
self.classifier_prototype = classifier
|
|
self.threshold = threshold
|
|
self.slack_tolerance = slack_tolerance
|
|
self.pool = []
|
|
self.check_feasibility = check_feasibility
|
|
self.violation_tolerance = violation_tolerance
|
|
self.max_iterations = max_iterations
|
|
self.current_iteration = 0
|
|
self.n_iterations = 0
|
|
self.n_restored = 0
|
|
|
|
def before_solve_mip(
|
|
self,
|
|
solver,
|
|
instance,
|
|
model,
|
|
stats,
|
|
features,
|
|
training_data,
|
|
):
|
|
self.n_iterations = 0
|
|
self.n_restored = 0
|
|
self.current_iteration = 0
|
|
|
|
logger.info("Predicting redundant LP constraints...")
|
|
x, constraints = self.x(
|
|
instance,
|
|
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
|
)
|
|
y = self.predict(x)
|
|
|
|
self.pool = []
|
|
n_dropped = 0
|
|
n_kept = 0
|
|
for category in y.keys():
|
|
for i in range(len(y[category])):
|
|
if y[category][i][1] == 1:
|
|
cid = constraints[category][i]
|
|
c = LazyConstraint(
|
|
cid=cid,
|
|
obj=solver.internal_solver.extract_constraint(cid),
|
|
)
|
|
self.pool += [c]
|
|
n_dropped += 1
|
|
else:
|
|
n_kept += 1
|
|
stats["DropRedundant: Kept"] = n_kept
|
|
stats["DropRedundant: Dropped"] = n_dropped
|
|
logger.info(f"Extracted {n_dropped} predicted constraints")
|
|
|
|
def after_solve_mip(
|
|
self,
|
|
solver,
|
|
instance,
|
|
model,
|
|
stats,
|
|
features,
|
|
training_data,
|
|
):
|
|
if training_data.slacks is None:
|
|
training_data.slacks = solver.internal_solver.get_inequality_slacks()
|
|
stats["DropRedundant: Iterations"] = self.n_iterations
|
|
stats["DropRedundant: Restored"] = self.n_restored
|
|
|
|
def fit(self, training_instances, n_jobs=1):
|
|
x, y = self.x_y(training_instances, n_jobs=n_jobs)
|
|
for category in tqdm(x.keys(), desc="Fit (drop)"):
|
|
if category not in self.classifiers:
|
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
self.classifiers[category].fit(x[category], np.array(y[category]))
|
|
|
|
@staticmethod
|
|
def x(instance, constraint_ids):
|
|
x = {}
|
|
constraints = {}
|
|
cids = constraint_ids
|
|
for cid in cids:
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
constraints[category] = []
|
|
x[category] += [instance.get_constraint_features(cid)]
|
|
constraints[category] += [cid]
|
|
for category in x.keys():
|
|
x[category] = np.array(x[category])
|
|
return x, constraints
|
|
|
|
def x_y(self, instances, n_jobs=1):
|
|
def _extract(instance):
|
|
x = {}
|
|
y = {}
|
|
for training_data in instance.training_data:
|
|
for (cid, slack) in training_data.slacks.items():
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
if category not in y:
|
|
y[category] = []
|
|
if slack > self.slack_tolerance:
|
|
y[category] += [[False, True]]
|
|
else:
|
|
y[category] += [[True, False]]
|
|
x[category] += [instance.get_constraint_features(cid)]
|
|
return x, y
|
|
|
|
if n_jobs == 1:
|
|
results = [_extract(i) for i in tqdm(instances, desc="Extract (drop 1/3)")]
|
|
else:
|
|
results = p_umap(
|
|
_extract,
|
|
instances,
|
|
num_cpus=n_jobs,
|
|
desc="Extract (drop 1/3)",
|
|
)
|
|
|
|
x_combined = {}
|
|
y_combined = {}
|
|
for (x, y) in tqdm(results, desc="Extract (drop 2/3)"):
|
|
for category in x.keys():
|
|
if category not in x_combined:
|
|
x_combined[category] = []
|
|
y_combined[category] = []
|
|
x_combined[category] += x[category]
|
|
y_combined[category] += y[category]
|
|
|
|
for category in tqdm(x_combined.keys(), desc="Extract (drop 3/3)"):
|
|
x_combined[category] = np.array(x_combined[category])
|
|
y_combined[category] = np.array(y_combined[category])
|
|
|
|
return x_combined, y_combined
|
|
|
|
def predict(self, x):
|
|
y = {}
|
|
for (category, x_cat) in x.items():
|
|
if category not in self.classifiers:
|
|
continue
|
|
y[category] = []
|
|
x_cat = np.array(x_cat)
|
|
proba = self.classifiers[category].predict_proba(x_cat)
|
|
for i in range(len(proba)):
|
|
if proba[i][1] >= self.threshold:
|
|
y[category] += [[False, True]]
|
|
else:
|
|
y[category] += [[True, False]]
|
|
return y
|
|
|
|
def evaluate(self, instance, n_jobs=1):
|
|
x, y_true = self.x_y([instance], n_jobs=n_jobs)
|
|
y_pred = self.predict(x)
|
|
tp, tn, fp, fn = 0, 0, 0, 0
|
|
for category in tqdm(
|
|
y_true.keys(),
|
|
disable=len(y_true) < 100,
|
|
desc="Eval (drop)",
|
|
):
|
|
for i in range(len(y_true[category])):
|
|
if (category in y_pred) and (y_pred[category][i][1] == 1):
|
|
if y_true[category][i][1] == 1:
|
|
tp += 1
|
|
else:
|
|
fp += 1
|
|
else:
|
|
if y_true[category][i][1] == 1:
|
|
fn += 1
|
|
else:
|
|
tn += 1
|
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|
|
|
|
def iteration_cb(self, solver, instance, model):
|
|
if not self.check_feasibility:
|
|
return False
|
|
if self.current_iteration >= self.max_iterations:
|
|
return False
|
|
if solver.internal_solver.is_infeasible():
|
|
return False
|
|
self.current_iteration += 1
|
|
logger.debug("Checking that dropped constraints are satisfied...")
|
|
constraints_to_add = []
|
|
for c in self.pool:
|
|
if not solver.internal_solver.is_constraint_satisfied(
|
|
c.obj,
|
|
self.violation_tolerance,
|
|
):
|
|
constraints_to_add.append(c)
|
|
for c in constraints_to_add:
|
|
self.pool.remove(c)
|
|
solver.internal_solver.add_constraint(c.obj)
|
|
if len(constraints_to_add) > 0:
|
|
self.n_restored += len(constraints_to_add)
|
|
logger.info(
|
|
"%8d constraints %8d in the pool"
|
|
% (len(constraints_to_add), len(self.pool))
|
|
)
|
|
self.n_iterations += 1
|
|
return True
|
|
else:
|
|
return False
|