You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/steps/test_convert_tight.py

128 lines
4.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock
from miplearn.classifiers import Classifier
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
from miplearn.instance import Instance
from miplearn.problems.knapsack import GurobiKnapsackInstance
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.learning import LearningSolver
def test_convert_tight_usage():
instance = GurobiKnapsackInstance(
weights=[3.0, 5.0, 10.0],
prices=[1.0, 1.0, 1.0],
capacity=16.0,
)
solver = LearningSolver(
solver=GurobiSolver,
components=[
RelaxIntegralityStep(),
ConvertTightIneqsIntoEqsStep(),
],
)
# Solve original problem
stats = solver.solve(instance)
original_upper_bound = stats["Upper bound"]
# Should collect training data
assert instance.training_data[0].slacks["eq_capacity"] == 0.0
# Fit and resolve
solver.fit([instance])
stats = solver.solve(instance)
# Objective value should be the same
assert stats["Upper bound"] == original_upper_bound
assert stats["ConvertTight: Inf iterations"] == 0
assert stats["ConvertTight: Subopt iterations"] == 0
class SampleInstance(Instance):
def to_model(self):
import gurobipy as grb
m = grb.Model("model")
x1 = m.addVar(name="x1")
x2 = m.addVar(name="x2")
m.setObjective(x1 + 2 * x2, grb.GRB.MAXIMIZE)
m.addConstr(x1 <= 2, name="c1")
m.addConstr(x2 <= 2, name="c2")
m.addConstr(x1 + x2 <= 3, name="c2")
return m
def test_convert_tight_infeasibility():
comp = ConvertTightIneqsIntoEqsStep()
comp.classifiers = {
"c1": Mock(spec=Classifier),
"c2": Mock(spec=Classifier),
"c3": Mock(spec=Classifier),
}
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
comp.classifiers["c3"].predict_proba = Mock(return_value=[[1, 0]])
solver = LearningSolver(
solver=GurobiSolver,
components=[comp],
solve_lp=False,
)
instance = SampleInstance()
stats = solver.solve(instance)
assert stats["Upper bound"] == 5.0
assert stats["ConvertTight: Inf iterations"] == 1
assert stats["ConvertTight: Subopt iterations"] == 0
def test_convert_tight_suboptimality():
comp = ConvertTightIneqsIntoEqsStep(check_optimality=True)
comp.classifiers = {
"c1": Mock(spec=Classifier),
"c2": Mock(spec=Classifier),
"c3": Mock(spec=Classifier),
}
comp.classifiers["c1"].predict_proba = Mock(return_value=[[0, 1]])
comp.classifiers["c2"].predict_proba = Mock(return_value=[[1, 0]])
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
solver = LearningSolver(
solver=GurobiSolver,
components=[comp],
solve_lp=False,
)
instance = SampleInstance()
stats = solver.solve(instance)
assert stats["Upper bound"] == 5.0
assert stats["ConvertTight: Inf iterations"] == 0
assert stats["ConvertTight: Subopt iterations"] == 1
def test_convert_tight_optimal():
comp = ConvertTightIneqsIntoEqsStep()
comp.classifiers = {
"c1": Mock(spec=Classifier),
"c2": Mock(spec=Classifier),
"c3": Mock(spec=Classifier),
}
comp.classifiers["c1"].predict_proba = Mock(return_value=[[1, 0]])
comp.classifiers["c2"].predict_proba = Mock(return_value=[[0, 1]])
comp.classifiers["c3"].predict_proba = Mock(return_value=[[0, 1]])
solver = LearningSolver(
solver=GurobiSolver,
components=[comp],
solve_lp=False,
)
instance = SampleInstance()
stats = solver.solve(instance)
assert stats["Upper bound"] == 5.0
assert stats["ConvertTight: Inf iterations"] == 0
assert stats["ConvertTight: Subopt iterations"] == 0