You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/tests/test_benchmark.py

50 lines
1.9 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver, BenchmarkRunner
from miplearn.warmstart import KnnWarmStartPredictor
from miplearn.problems.stab import MaxStableSetInstance, MaxStableSetGenerator
import networkx as nx
import numpy as np
import pyomo.environ as pe
import os.path
def test_benchmark():
graph = nx.cycle_graph(10)
base_weights = np.random.rand(10)
# Generate training and test instances
train_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(5)
test_instances = MaxStableSetGenerator(graph=graph,
base_weights=base_weights,
perturbation_scale=1.0,
).generate(3)
# Training phase...
training_solver = LearningSolver()
training_solver.parallel_solve(train_instances, n_jobs=10)
training_solver.save("data.bin")
# Test phase...
test_solvers = {
"Strategy A": LearningSolver(ws_predictor=None),
"Strategy B": LearningSolver(ws_predictor=None),
}
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_fit("data.bin")
benchmark.parallel_solve(test_instances, n_jobs=2)
assert benchmark.raw_results().values.shape == (6,6)
benchmark.save_results("/tmp/benchmark.csv")
assert os.path.isfile("/tmp/benchmark.csv")
benchmark = BenchmarkRunner(test_solvers)
benchmark.load_results("/tmp/benchmark.csv")
assert benchmark.raw_results().values.shape == (6,6)